Mitochondria are the main source of free radical species and the most direct target for their damaging effects, which especially affect the brain mitochondrial function, which is better maintained by females than males. The aim of this work was to investigate the age-related changes in rat brain mitochondrial oxidative status focusing on sex differences. Male and female rat brain from four different age groups (6, 12, 18 and 24 months old) were analyzed.
View Article and Find Full Text PDFAging is responsible for the decline in the function of mitochondria and their increase in size and number--adaptive mechanism to restore mitochondrial function. Estrogens increase mitochondrial function, especially in female rats. The aim of this study was to determine the age-related changes in rat brain mitochondrial function focusing on sex differences.
View Article and Find Full Text PDFSeven autosomal recessive genes associated with juvenile and young-onset Levodopa-responsive parkinsonism have been identified. Mutations in PRKN, DJ-1, and PINK1 are associated with a rather pure parkinsonian phenotype, and have a more benign course with sustained treatment response and absence of dementia. On the other hand, Kufor-Rakeb syndrome has additional signs, which distinguish it clearly from Parkinson's disease including supranuclear vertical gaze palsy, myoclonic jerks, pyramidal signs, and cognitive impairment.
View Article and Find Full Text PDFMetabolic features and oxidative stress have been extensively studied in cancer cells. However, comparative studies between cancer cell populations that coexist in human neoplastic tissue are not frequently available. The aim of the present study was to characterize markers of oxidative status and mitochondrial function in center vs.
View Article and Find Full Text PDFFemales show lower incidences of several neurodegenerative diseases related to oxidative stress and mitochondrial dysfunction than males. In addition, female rats show more differentiated mitochondria than males in several tissues. The aim of this work was to investigate the existence of sex-dependent differences in brain mitochondrial bioenergetics and oxidative balance in aged rats.
View Article and Find Full Text PDFCaloric restriction (CR) has been shown to prevent the age-associated loss of mitochondrial function and biogenesis in several tissues such as liver, heart, and skeletal muscle. However, little is known about the effects of CR on a tissue in which the mitochondria have no adenosine triphosphate (ATP)-producing purpose but show a high degree of uncoupling, namely brown adipose tissue (BAT). Hence, the aim of the present study was to analyze the effect of long-term CR on BAT mitochondrial function and biogenesis.
View Article and Find Full Text PDF