Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion.
View Article and Find Full Text PDFRegulated secretion is controlled by Ca sensors with different affinities and subcellular distributions. Inactivation of (synaptotagmin-1), the main Ca sensor for synchronous neurotransmission in many neurons, enhances asynchronous and spontaneous release rates, suggesting that Syt1 inhibits other sensors with higher Ca affinities and/or lower cooperativities. Such sensors could include Doc2a and Doc2b, which have been implicated in spontaneous and asynchronous neurotransmitter release and compete with Syt1 for binding SNARE complexes.
View Article and Find Full Text PDF