Measuring the immunogenicity of pneumococcal vaccines involves the use of immunoassays to measure serotype-specific immunoglobulin G (IgG) antibody levels post-vaccination with the current human reference serum standard (007sp) for anti-pneumococcal capsule antibodies. Development of new pneumococcal conjugate vaccines (PCVs) with additional serotypes not in 007sp (e.g.
View Article and Find Full Text PDFPneumococcal serogroups consist of structurally related serotypes, and serotype-specific antibodies can cross-react against other serotypes within the same serogroup. Cross-reactivity of vaccine-induced serotype 6A antibodies, and, to a lesser extent, serotype 6B antibodies, to serotype 6C has been demonstrated following receipt of the 13-valent pneumococcal conjugate vaccine (PCV13), which contains serotypes 6A and 6B. V114 is a 15-valent PCV containing the 13 PCV13 serotypes plus two additional serotypes, 22F and 33F.
View Article and Find Full Text PDFStreptococcus pneumoniae is a major cause of community-acquired pneumonia (CAP) in young children, older adults, and those with immunocompromised status. Since the introduction of pneumococcal vaccines, the burden of invasive pneumococcal disease caused by vaccine serotypes (STs) has decreased; however, the effect on the burden of CAP is unclear, potentially due to the lack of testing for pneumococcal STs. We describe the development, qualification, and clinical validation of a high-throughput and multiplex ST-specific urine antigen detection (SSUAD) assay to address the unmet need in CAP pneumococcal epidemiology.
View Article and Find Full Text PDFTo re-optimize the pneumococcal (Pn) electrochemiluminescence (ECL) assay and to validate and bridge the enhanced assay to the WHO ELISA, to support the Phase III clinical trial program for V114, a 15-valent Pn conjugate vaccine. The Pn ECL assay was re-optimized, validated and formally bridged to the WHO ELISA. The enhanced Pn ECL assay met all prespecified validation acceptance criteria and demonstrated concordance with the WHO ELISA.
View Article and Find Full Text PDFTo streamline and improve throughput, the agar-based multiplexed opsonophagocytic killing assay (MOPA) was optimized and validated on a microcolony platform for use in the Phase III clinical trial program for V114, an MSD 15-valent pneumococcal conjugate vaccine candidate. The precision, dilutional linearity and specificity of the microcolony MOPA (mMOPA) were assessed for each serotype in validation experiments. All prespecified acceptance criteria on assay performance were satisfied.
View Article and Find Full Text PDF