Publications by authors named "Rocio Canals"

Effective vaccines against Typhi, targeting the Vi capsular polysaccharide, have been developed and are being introduced into routine immunization in endemic countries. Vi conjugated vaccines are also being tested in new multi-component vaccine formulations. Simple, high-throughput and cost-effective assays to quantify Vi-specific IgG in clinical sera are needed.

View Article and Find Full Text PDF

Invasive non-typhoidal (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 .

View Article and Find Full Text PDF

Introduction: Invasive non-typhoidal Salmonellosis (iNTS) is mainly caused by serovars Typhimurium and Enteritidis and is estimated to result in 77 500 deaths per year, disproportionately affecting children under 5 years of age in sub-Saharan Africa. Invasive non-typhoidal serovars are increasingly acquiring resistance to first-line antibiotics, thus an effective vaccine would be a valuable tool in reducing morbidity and mortality from infection. While NTS livestock vaccines are in wide use, no licensed vaccines exist for use in humans.

View Article and Find Full Text PDF

Nontyphoidal Salmonella (NTS) is a leading cause of morbidity and mortality caused by enteric pathogens worldwide in both children and adults, and vaccines are not yet available. The measurement of antigen-specific antibodies in the sera of vaccinated or convalescent individuals is crucial to understand the incidence of disease and the immunogenicity of vaccine candidates. A solid and standardized assay used to determine the level of specific anti-antigens IgG is therefore of paramount importance.

View Article and Find Full Text PDF

Enteritidis is the second most common serovar associated with invasive non-typhoidal (iNTS) disease in sub-Saharan Africa. Previously, genomic and phylogenetic characterization of . Enteritidis isolates from the human bloodstream led to the discovery of the Central/Eastern African clade (CEAC) and West African clade, which were distinct from the gastroenteritis-associated global epidemic clade (GEC).

View Article and Find Full Text PDF

Typhimurium and Enteritidis are leading causative agents of invasive nontyphoidal (iNTS) disease, which represents one of the major causes of death and morbidity in sub-Saharan Africa, still partially underestimated. Large sero-epidemiological studies are necessary to unravel the burden of disease and guide the introduction of vaccines that are not yet available. Even if no correlate of protection has been determined so far for iNTS, the evaluation of complement-mediated functionality of antibodies generated towards natural infection or elicited upon vaccination may represent a big step towards this achievement.

View Article and Find Full Text PDF

Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear.

View Article and Find Full Text PDF

The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues.

View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified.

View Article and Find Full Text PDF

Prophages are integrated phage elements that are a pervasive feature of bacterial genomes. The fitness of bacteria is enhanced by prophages that confer beneficial functions such as virulence, stress tolerance or phage resistance, and these functions are encoded by 'accessory' or 'moron' loci. Whilst the majority of phage-encoded genes are repressed during lysogeny, accessory loci are often highly expressed.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a specific type of Salmonella called ST313 to understand how it survives and grows, especially during infections.
  • They found that many genes were important for its growth in different environments, with 724 needed in one type of growth condition and 851 in another.
  • The researchers also discovered that some genes were crucial for the bacteria to live inside immune cells but not so much for growth in lab conditions, showing that this strain is similar to other Salmonella types.
View Article and Find Full Text PDF

Over recent decades, Salmonella infection research has predominantly relied on murine infection models. However, in many cases the infection phenotypes of Salmonella pathovars in mice do not recapitulate human disease. For example, Salmonella Typhimurium ST313 is associated with enhanced invasive infection of immunocompromised people in Africa, but infection of mice and other animal models with ST313 have not consistently reproduced this invasive phenotype.

View Article and Find Full Text PDF

Background: Reptile-associated Salmonella bacteria are a major, but often neglected cause of both gastrointestinal and bloodstream infection in humans globally. The diversity of Salmonella enterica has not yet been determined in venomous snakes, however other ectothermic animals have been reported to carry a broad range of Salmonella bacteria. We investigated the prevalence and diversity of Salmonella in a collection of venomous snakes and non-venomous reptiles.

View Article and Find Full Text PDF

Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions.

View Article and Find Full Text PDF

serovar Typhimurium ST313 is a relatively newly emerged sequence type that is causing a devastating epidemic of bloodstream infections across sub-Saharan Africa. Analysis of hundreds of genomes has revealed that ST313 is closely related to the ST19 group of Typhimurium that cause gastroenteritis across the world. The core genomes of ST313 and ST19 vary by only ∼1,000 SNPs.

View Article and Find Full Text PDF

In the past 30 years, bloodstream infections have become a significant health problem in sub-Saharan Africa and are responsible for the deaths of an estimated 390,000 people each year. The disease is predominantly caused by a recently described sequence type of Typhimurium: ST313, which has a distinctive set of prophage sequences. We have thoroughly characterized the ST313-associated prophages both genetically and experimentally.

View Article and Find Full Text PDF

Human enteric pathogens, such as spp. and verotoxigenic , are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens.

View Article and Find Full Text PDF

The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction.

View Article and Find Full Text PDF

The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway.

View Article and Find Full Text PDF

A group of virulent Aeromonas hydrophila, A. sobria, and A. veronii biovar sobria strains isolated from humans and fish have been described; these strains classified to serotype O11 are serologically related by their lipopolysaccharide (LPS) O-antigen (O-polysaccharide), and the presence of an S-layer consisting of multiple copies of a crystalline surface array protein with a molecular weight of 52 kDa in the form of a crystalline surface array which lies peripheral to the cell wall.

View Article and Find Full Text PDF

Salmonella Typhimurium isolate D23580 represents a recently identified ST313 lineage of invasive non-typhoidal Salmonellae (iNTS). One of the differences between this lineage and other non-iNTS S. Typhimurium isolates is the presence of prophage BTP1.

View Article and Find Full Text PDF

Cronobacter turicensis is an opportunistic foodborne pathogen that can cause a rare but sometimes lethal infection in neonates. Little is known about the virulence mechanisms and intracellular lifestyle of this pathogen. In this study, we developed an IgG monoclonal antibody (MAb; MAb 2G4) that specifically recognizes the O1 antigen of C.

View Article and Find Full Text PDF

We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections.

View Article and Find Full Text PDF

Bacterial transcriptional networks consist of hundreds of transcription factors and thousands of promoters. However, the true complexity of transcription in a bacterial pathogen and the effect of the environments encountered during infection remain to be established. We present a simplified approach for global promoter identification in bacteria using RNA-seq-based transcriptomic analyses of 22 distinct infection-relevant environmental conditions.

View Article and Find Full Text PDF