Publications by authors named "Rocio Camacho Morales"

The ability to detect and image short-wave infrared light has important applications in surveillance, autonomous navigation, and biological imaging. However, the current infrared imaging technologies often pose challenges due to large footprint, large thermal noise and inability to augment infrared and visible imaging. Here, infrared imaging is demonstrated by nonlinear up-conversion to the visible in an ultra-compact, high-quality-factor lithium niobate resonant metasurface.

View Article and Find Full Text PDF

We investigate transient, photo-thermally induced metasurface effects in a planar thin-film multilayer based on a phase-transition material. Illumination of a properly designed multilayer with two obliquely incident and phase-coherent pulsed pumps induces a transient and reversible temperature pattern in the phase-transition layer. The deep periodic modulation of the refractive index, caused by the interfering pumps, produces a transient Fano-like spectral feature associated with a guided-mode resonance.

View Article and Find Full Text PDF

Metasurfaces consisting of nanoscale structures are underpinning new physical principles for the creation and shaping of quantum states of light. Multiphoton states that are entangled in spatial or angular domains are an essential resource for many quantum applications; however, their production traditionally relies on bulky nonlinear crystals. We predict and demonstrate experimentally the generation of spatially entangled photon pairs through spontaneous parametric down-conversion from a metasurface incorporating a nonlinear thin film of lithium niobate covered by a silica meta-grating.

View Article and Find Full Text PDF

Resonant metasurfaces provide a unique platform for enhancing multiwave nonlinear interactions. However, the difficulties over mode matching and material transparency place significant challenges in the enhancement of these multiwave processes. Here we demonstrate efficient nonlinear sum-frequency generation (SFG) in multiresonant GaP metasurfaces based on guided-wave bound-state in the continuum resonances.

View Article and Find Full Text PDF

High-index III-V semiconductor nanoantennas have gained great attention for enhanced nonlinear light-matter interactions, in the past few years. However, the complexity of nonlinear emission profiles imposes severe constraints on practical applications, such as in optical communications and integrated optoelectronic devices. These complexities include the lack of unidirectional nonlinear emission and the severe challenges in switching between forward and backward emissions, due to the structure of the susceptibility tensor of the III-V nanoantennas.

View Article and Find Full Text PDF

Dynamical tuning of the nonlinear optical wavefront allows for a specific spectral response of predefined profiles, enabling various applications of nonlinear nanophotonics. This study experimentally demonstrates the dynamical switching of images generated by an ultrathin silicon nonlinear metasurface supporting a high-quality leaky mode, which is formed by partially breaking a bound-state-in-the-continuum (BIC) generated by the collective magnetic dipole (MD) resonance excited in the subdiffractive periodic systems. Such a quasi-BIC MD state can be excited directly under normal plane wave incidence and leads to a strong near-field enhancement to further boost the nonlinear process, resulting in a 500-fold enhancement of the third-harmonic emission experimentally.

View Article and Find Full Text PDF

Second-harmonic generation (SHG) in resonant dielectric Mie-scattering nanoparticles has been hailed as a powerful platform for nonlinear light sources. While bulk-SHG is suppressed in elemental semiconductors, for example, silicon and germanium due to their centrosymmetry, the group of zincblende III-V compound semiconductors, especially (100)-grown AlGaAs and GaAs, have recently been presented as promising alternatives. However, major obstacles to push the technology toward practical applications are the limited control over directionality of the SH emission and especially zero forward/backward radiation, resulting from the peculiar nature of the second-order nonlinear susceptibility of this otherwise highly promising group of semiconductors.

View Article and Find Full Text PDF

We demonstrate that a dielectric anapole resonator on a metallic mirror can enhance the third harmonic emission by two orders of magnitude compared to a typical anapole resonator on an insulator substrate. By employing a gold mirror under a silicon nanodisk, we introduce a novel characteristic of the anapole mode through the spatial overlap of resonantly excited Cartesian electric and toroidal dipole modes. This is a remarkable improvement on the early demonstrations of the anapole mode in which the electric and toroidal modes interfere off-resonantly.

View Article and Find Full Text PDF

We investigate second- and third-harmonic generation from individual AlGaAs nanoantennas using far-field mapping with radially- and azimuthally-polarized cylindrical vector beams. Due to the unique polarization structure of these beams, we are able to determine the crystal orientation of the nanoantenna in a single scanning map. Our method thus provides a novel and versatile optical tool to study the crystal properties of semiconductor nanoantennas.

View Article and Find Full Text PDF

Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances.

View Article and Find Full Text PDF

The quest for nanoscale light sources with designer radiation patterns and polarization has motivated the development of nanoantennas that interact strongly with the incoming light and are able to transform its frequency, radiation, and polarization patterns. Here, we demonstrate dielectric AlGaAs nanoantennas for efficient second harmonic generation, enabling the control of both directionality and polarization of nonlinear emission. This is enabled by specialized III-V semiconductor nanofabrication of high-quality AlGaAs nanostructures embedded in optically transparent low-index material, thus allowing for simultaneous forward and backward nonlinear emission.

View Article and Find Full Text PDF