This paper analyses the optimal control of infectious disease propagation using a classic susceptible-infected-recovered (SIR) model characterised by permanent immunity and the absence of available vaccines. The control is performed over a time-dependent mean reproduction number, in order to minimise the cumulative number of ever-infected individuals (recovered), under different constraints. We consider constraints on non-pharmaceutical interventions ranging from partial lockdown to non-intervention, as well as the social and economic costs associated with such interventions, and the capacity limitations of intensive care units that limits the number of infected individuals to a maximum allowed value.
View Article and Find Full Text PDFLigand-receptor systems, covalent modification cycles, and transcriptional networks are the fundamental components of cell signaling and gene expression systems. While their behavior in reaching a steady-state regime under step-like stimulation is well understood, their response under repetitive stimulation, particularly at early time stages is poorly characterized. Yet, early-stage responses to external inputs are arguably as informative as late-stage ones.
View Article and Find Full Text PDFSocial distance, quarantines and total lock-downs are non-pharmaceutical interventions that policymakers have used to mitigate the spread of the COVID-19 virus. However, these measures could be harmful to societies in terms of social and economic costs, and they can be maintained only for a short period of time. Here we investigate the optimal strategies that minimize the impact of an epidemic, by studying the conditions for an optimal control of a Susceptible-Infected-Recovered model with a limitation on the total duration of the quarantine.
View Article and Find Full Text PDF