MULIBREY nanism which results from autosomal recessive mutations in TRIM37 impacts skeletal development, leading to growth delay with complications in multiple organs. In this study, we employed a combined proteomics and qPCR screening approach to investigate the molecular alterations in the CHON-002 cell line by comparing CHON-002 wild-type (WT) cells to CHON-002 TRIM37 knockdown (KD) cells. Our proteomic analysis demonstrated that TRIM37 depletion predominantly affects the expression of extracellular matrix proteins (ECM).
View Article and Find Full Text PDFBackground: Associations of genetic variants within certain fibril-forming genes have previously been observed with anterior cruciate ligament (ACL) injuries. Evidence suggests a significant role of angiogenesis-associated cytokines in remodeling the ligament fibril matrix after mechanical loading and maintaining structural and functional integrity of the ligament. Functional polymorphisms within the vascular endothelial growth factor A (VEGFA) gene have emerged as plausible candidates owing to their role in the regulation of angiogenic responses.
View Article and Find Full Text PDFThe selenoprotein glutathione peroxidase 4 (GPX4), the only member of the glutathione peroxidase family able to directly reduce cell membrane-oxidized fatty acids and cholesterol, was recently identified as the central regulator of ferroptosis. GPX4 knockdown in mouse hematopoietic cells leads to hemolytic anemia and to increased spleen erythroid progenitor death. The role of GPX4 during human erythropoiesis is unknown.
View Article and Find Full Text PDFMultiple molecular disorders can affect mechanisms regulating proliferation and differentiation of growth plate chondrocytes. Mutations in the TRIM37 gene cause the Mulibrey nanism, a heritable growth disorder. Since chondrocytes are instrumental in long bone growth that is deficient in nanism, we hypothesized that TRIM37 defect could contribute to dysregulation of the chondrocyte cell cycle.
View Article and Find Full Text PDFHereditary xerocytosis is a dominantly inherited red cell membrane disorder caused in most cases by gain-of-function mutations in PIEZO1, encoding a mechanosensitive ion channel that translates a mechanic stimulus into calcium influx. We found that PIEZO1 was expressed early in erythroid progenitor cells, and investigated whether it could be involved in erythropoiesis, besides having a role in the homeostasis of mature red cell hydration. In UT7 cells, chemical PIEZO1 activation using YODA1 repressed glycophorin A expression by 75%.
View Article and Find Full Text PDFTRIpartite motif (TRIM) proteins are part of the largest subfamilies of E3 ligases that mediate the transfer of ubiquitin to substrate target proteins. In this review, we focus on TRIM37 in the normal cell and in pathological conditions, with an emphasis on the MULIBREY (MUscle-LIver-BRain-EYe) genetic disorder caused by mutations. TRIM37 is characterized by the presence of a RING domain, B-box motifs, and a coiled-coil region, and its C-terminal part includes the MATH domain specific to TRIM37.
View Article and Find Full Text PDFWe have identified a deletion of 125 bp (α-α(Δ125)) (NG_000006.1: g.37040_37164del) in the α-globin gene cluster in a Kabyle population.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
July 2015
Background: Heterozygous dominant mutations of PRRT2 have been associated with various types of paroxysmal neurological manifestations, including benign familial infantile convulsions and paroxysmal kinesigenic dyskinesia. The phenotype associated with biallelic mutations is not well understood as few cases have been reported.
Methods: PRRT2 screening was performed by Sanger sequencing and quantitative multiplex PCR of short fluorescent fragments.
Pre-BCR acts as a critical checkpoint in B cell development. However, its signalling cascade still remains indistinctly characterised in human. We investigated pre-BCR signalling pathway to examine its regulation in normal primary pre-B lymphocytes and pre-B cell lines.
View Article and Find Full Text PDFStormorken syndrome is a rare autosomal dominant disorder characterized by a phenotype that includes miosis, thrombocytopenia/thrombocytopathy with bleeding time diathesis, intellectual disability, mild hypocalcemia, muscle fatigue, asplenia, and ichthyosis. Using targeted sequencing and whole-exome sequencing, we identified the c.910C > T transition in a STIM1 allele (p.
View Article and Find Full Text PDFHemochromatosis type 4 is a rare form of primary iron overload transmitted as an autosomal dominant trait caused by mutations in the gene encoding the iron transport protein ferroportin 1 (SLC40A1). SLC40A1 mutations fall into two functional categories (loss- versus gain-of-function) underlying two distinct clinical entities (hemochromatosis type 4A versus type 4B). However, the vast majority of SLC40A1 mutations are rare missense variations, with only a few showing strong evidence of causality.
View Article and Find Full Text PDFObjective: The objective of the study is to determine the frequency and the clinical significance of autoantibodies to the pericentromeric heterochromatin protein 1 (HP1). So far this antinuclear antibody specificity has been mainly reported in patients with the CREST syndrome.
Methods: We screened the sera of 199 individuals, including patients suffering from various autoimmune disorders (Group I, n=145) and non autoimmune diseases (Group II, n=44 patients) as well as healthy individuals (Group III, n=30).
Most adults affected with hereditary hemochromatosis are homozygous for a single point mutation of HFE (p.Cys282Tyr). Apart from the compound heterozygous state for the p.
View Article and Find Full Text PDFArch Cardiovasc Dis
October 2013
Background: Brugada syndrome is a genetic heart disease with autosomal dominant inheritance. Family screening commonly detects one parent responsible for transmission of the disease.
Aims: To describe atypical transmission of Brugada syndrome.
Objective: Whole genome sequencing and the screening of 103 families recently led us to identify PRRT2 (proline-rich-transmembrane protein) as the gene causing infantile convulsions (IC) with paroxysmal kinesigenic dyskinesia (PKD) (PKD/IC syndrome, formerly ICCA). There is interfamilial and intrafamilial variability and the patients may have IC or PKD. Association of IC with hemiplegic migraine (HM) has also been reported.
View Article and Find Full Text PDFParoxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) is an episodic movement disorder with autosomal-dominant inheritance and high penetrance, but the causative genetic mutation is unknown. We have now identified four truncating mutations involving the gene PRRT2 in the vast majority (24/25) of well-characterized families with PKD/IC. PRRT2 truncating mutations were also detected in 28 of 78 additional families.
View Article and Find Full Text PDFHFE-related hemochromatosis (HFE hemochromatosis) or type 1 hemochromatosis is an autosomal recessive disease characterized by progressive iron overload usually expressed in adulthood. The HFE gene, located on the short arm of chromosome 6 (6p21.3), encodes a protein that plays a crucial role in iron metabolism by modulating hepcidin synthesis in the liver.
View Article and Find Full Text PDFBackground: Heterozygotes for the p.Cys282Tyr (C282Y) mutation of the HFE gene do not usually express a hemochromatosis phenotype. Apart from the compound heterozygous state for C282Y and the widespread p.
View Article and Find Full Text PDF