Background: Pregnancy represents a critical window of vulnerability to the harmful effects of air pollution on health. However, long-term consequences such as risk of having lower respiratory tract infections (LRTIs) are less explored. This systematic review aims to synthesize previous research on prenatal exposure to ambient (outdoor) air pollution and LRTIs in childhood and adolescence.
View Article and Find Full Text PDFIn this contribution, we applied a multi-stage machine learning (ML) framework to map daily values of nitrogen dioxide (NO) and particulate matter (PM and PM) at a 1 km resolution over Great Britain for the period 2003-2021. The process combined ground monitoring observations, satellite-derived products, climate reanalyses and chemical transport model datasets, and traffic and land-use data. Each feature was harmonized to 1 km resolution and extracted at monitoring sites.
View Article and Find Full Text PDFDengue fever, a prevalent and rapidly spreading arboviral disease, poses substantial public health and economic challenges in tropical and sub-tropical regions worldwide. Predicting infectious disease outbreaks on a countrywide scale is complex due to spatiotemporal variations in dengue incidence across administrative areas. To address this, we propose a machine learning ensemble model for forecasting the dengue incidence rate (DIR) in Brazil, with a focus on the population under 19 years old.
View Article and Find Full Text PDFRecent developments in linkage procedures and exposure modelling offer great prospects for cohort analyses on the health risks of environmental factors. However, assigning individual-level exposures to large population-based cohorts poses methodological and practical problems. In this contribution, we illustrate a linkage framework to reconstruct environmental exposures for individual-level epidemiological analyses, discussing methodological and practical issues such as residential mobility and privacy concerns.
View Article and Find Full Text PDFCombined heat and humidity is frequently described as the main driver of human heat-related mortality, more so than dry-bulb temperature alone. While based on physiological thinking, this assumption has not been robustly supported by epidemiological evidence. By performing the first systematic comparison of eight heat stress metrics (i.
View Article and Find Full Text PDFBackground: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks.
View Article and Find Full Text PDFBackground And Aim: The associations between COVID-19 transmission and meteorological factors are scientifically debated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.
View Article and Find Full Text PDFBackground: Epidemiological literature on the health risks associated with non-optimal temperature has mostly reported average estimates across large areas or specific population groups. However, the heterogeneous distribution of drivers of vulnerability can result in local differences in health risks associated with heat and cold. We aimed to analyse the association between ambient air temperature and all-cause mortality across England and Wales and characterise small scale patterns in temperature-related mortality risks and impacts.
View Article and Find Full Text PDFEpidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data.
View Article and Find Full Text PDFPrevious studies have reported a decrease in air pollution levels following the enforcement of lockdown measures during the first wave of the COVID-19 pandemic. However, these investigations were mostly based on simple pre-post comparisons using past years as a reference and did not assess the role of different policy interventions. This study contributes to knowledge by quantifying the association between specific lockdown measures and the decrease in NO, O, PM, and PM levels across 47 European cities.
View Article and Find Full Text PDFBackground: The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.
View Article and Find Full Text PDFThere is conflicting evidence on the influence of weather on COVID-19 transmission. Our aim is to estimate weather-dependent signatures in the early phase of the pandemic, while controlling for socio-economic factors and non-pharmaceutical interventions. We identify a modest non-linear association between mean temperature and the effective reproduction number (R) in 409 cities in 26 countries, with a decrease of 0.
View Article and Find Full Text PDFNew gridded climate datasets (GCDs) on spatially resolved modeled weather data have recently been released to explore the impacts of climate change. GCDs have been suggested as potential alternatives to weather station data in epidemiological assessments on health impacts of temperature and climate change. These can be particularly useful for assessment in regions that have remained understudied due to limited or low quality weather station data.
View Article and Find Full Text PDFOver the past decade, Brazil has experienced and continues to be impacted by extreme climate events. This study aims to evaluate the association between daily average temperature and mortality from respiratory disease among Brazilian elderlies. A daily time-series study between 2000 and 2017 in 27 Brazilian cities was conducted.
View Article and Find Full Text PDFAir temperature has been the most commonly used exposure metric in assessing relationships between thermal stress and mortality. Lack of the high-quality meteorological station data necessary to adequately characterize the thermal environment has been one of the main limitations for the use of more complex thermal indices. Global climate reanalyses may provide an ideal platform to overcome this limitation and define complex heat and cold stress conditions anywhere in the world.
View Article and Find Full Text PDFEpidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolutions. This study aims to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM) levels across Great Britain between 2008-2018.
View Article and Find Full Text PDF