Honey bee foraging is a complex behavior because it involves tens of thousands of organisms making decisions about where to collect pollen and nectar based on the quality of resources and the distance to flowers. Studying this aspect of their biology is possible through direct observations but the large number of individuals involved in this behavior makes the implementation of technologies ideal to scale up this type of study. Consequently, there is a need for instruments that can facilitate accurate assessments of honey bee foraging at the colony level.
View Article and Find Full Text PDFIn eusocial insects, the health of the queens-the colony founders and sole reproductive females-is a primary determinant for colony success. Queen failure in the honey bee , for example, is a major concern of beekeepers who annually suffer colony losses, necessitating a greater knowledge of queen health. Several studies on the microbiome of honey bees have characterized its diversity and shown its importance for the health of worker bees, the female non-reproductive caste.
View Article and Find Full Text PDFIn temperate climates, honey bees rely on stored carbohydrates to sustain them throughout the winter. In nature, honey serves as the bees' source of carbohydrates, but when managed, beekeepers often harvest honey and replace it with cheaper, artificial feed. The effects of alternative carbohydrate sources on colony survival, strength, and individual bee metabolic health are poorly understood.
View Article and Find Full Text PDFHoney bee colony management is critical to mitigating the negative effects of biotic and abiotic stressors. However, there is significant variation in the practices implemented by beekeepers, which results in varying management systems. This longitudinal study incorporated a systems approach to experimentally test the role of three representative beekeeping management systems (conventional, organic, and chemical-free) on the health and productivity of stationary honey-producing colonies over 3 years.
View Article and Find Full Text PDFThe spotted lanternfly, Lycorma delicatula, is an introduced plant hopper that causes significant damage to host plants in the United States. Because of its affinity for tree of heaven, Ailanthus altissima, control efforts have focused on the use of the systemic insecticide, dinotefuran, in designated trap trees. There is concern about exposure to this pesticide by non-target species, especially honey bees, Apis mellifera, via lanternfly honeydew.
View Article and Find Full Text PDFManagement by beekeepers is of utmost importance for the health and survival of honey bee colonies. Beekeeping management practices vary from low to high intervention regarding the use of chemicals, hive manipulations, and supplemental feeding of colonies. In this study, we use quantitative data from the Bee Informed Partnership's national survey to investigate drivers of management practices among beekeepers in the United States.
View Article and Find Full Text PDFThe effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees.
View Article and Find Full Text PDFIndoor fumigation of honey bees, Apis mellifera L., with formic acid to control varroa mites, Varroa destructor Anderson & Trueman, allows simultaneous fumigation of multiple colonies with little labor input and good efficacy. Several experiments were designed to test the efficacy of formic acid as a treatment for honey bee mites, Acarapis woodi (Rennie) (Acari: Tarsonemidae), and nosema disease, Nosema sp.
View Article and Find Full Text PDFBackground: Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees.
View Article and Find Full Text PDFBackground: Honey bees are an essential component of modern agriculture. A recently recognized ailment, Colony Collapse Disorder (CCD), devastates colonies, leaving hives with a complete lack of bees, dead or alive. Up to now, estimates of honey bee population decline have not included losses occurring during the wintering period, thus underestimating actual colony mortality.
View Article and Find Full Text PDFControlling populations of varroa mites is crucial for the survival of the beekeeping industry. Many treatments exist, and all are designed to kill mites on adult bees. Because the majority of mites are found under capped brood, most treatments are designed to deliver active ingredients over an extended period to control mites on adult bees, as developing bees and mites emerge.
View Article and Find Full Text PDFThe combination of the concentration of formic acid and the duration of fumigation (CT product) during indoor treatments of honey bee, Apis mellifera L., colonies to control the varroa mite, Varroa destructor Anderson & Trueman, determines the efficacy of the treatment. Because high concentrations can cause queen mortality, we hypothesized that a high CT product given as a low concentration over a long exposure time rather than as a high concentration over a short exposure time would allow effective control of varroa mites without the detrimental effects on queens.
View Article and Find Full Text PDFFormic acid treatment for the control of the ectoparasitic varroa mite, Varroa destructor Anderson & Trueman, infesting honey bee, Apis mellifera L., colonies is usually carried out as an in-hive outdoor treatment. This study examined the use of formic acid on wintered colonies kept indoors at 5 degrees C from 24 November 1999 to 24 March 2000.
View Article and Find Full Text PDFIn order to decrease the variability of formic acid treatments against the honey bee parasite the varroa mite, Varroa destructor (Anderson and Trueman 2000), it is necessary to determine the dose-time combination that best controls mites without harming bees. The concentration x time (CT) product is a valuable tool for studying fumigants and how they might perform under various environmental conditions. This laboratory study is an assessment of the efficacy of formic acid against the varroa mite under a range of formic acid concentrations and temperatures.
View Article and Find Full Text PDF