Publications by authors named "Robyn Seipp"

Histone deacetylase inhibitors (HDACi) have been hailed as a powerful new class of anticancer drugs. The HDACi, trichostatin A (TSA), is thought to interfere with epigenetic control of cell cycle progression in G1 and G2-M phase, resulting in growth arrest, differentiation, or apoptosis. Here, we describe a novel mechanism of action of HDACis in promoting immune responses against tumors.

View Article and Find Full Text PDF

Background: Cross-presentation by dendritic cells (DCs) is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined.

Methodology/principal Findings: In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I) from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs.

View Article and Find Full Text PDF

Purpose: Tpn is a member of the MHC class I loading complex and functions to bridge the TAP peptide transporter to MHC class I molecules. Metastatic human carcinomas often express low levels of the antigen-processing components Tapasin and TAP and display few functional surface MHC class I molecules. As a result, carcinomas are unrecognizable by effector CTLs.

View Article and Find Full Text PDF

Downregulation of the transporter associated with antigen processing 1 (TAP-1) has been observed in many tumors and is closely associated with tumor immunoevasion mechanisms, growth, and metastatic ability. The molecular mechanisms underlying the relatively low level of transcription of the tap-1 gene in cancer cells are largely unexplained. In this study, we tested the hypothesis that epigenetic regulation plays a fundamental role in controlling tumor antigen processing and immune escape mechanisms.

View Article and Find Full Text PDF

Many immune therapeutic strategies are under development for melanoma to treat metastatic disease and prevent disease reoccurrence. However, human melanoma cells are often deficient in antigen processing and this appears to play a role in their expansion and escape from immunosurveillance. For example, expression of the transporters associated with antigen processing (TAP1 and TAP2) is down-regulated in the mouse melanoma cell line B16F10.

View Article and Find Full Text PDF

Despite continued progress in understanding the pathophysiology of tumours, curative therapeutic options are still lacking for the metastatic form of the disease. One approach that has gathered considerable interest is the creation of therapeutic vaccines using genetically engineered non-replicating viruses as vehicles to revive immunosurveillance mechanisms that may eradicate residual tumour cells. A perceived problem with this approach is that the number of non-replicating viruses used as a vaccine inoculum does not remotely approximate the total number of cells in the body, nor even the number of tumour cells in the case of large tumour burden or metastasis.

View Article and Find Full Text PDF

The genome of the Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a group II NPV which infects the cabbage looper (T. ni), has been completely sequenced and analyzed. The TnSNPV DNA genome consists of 134,394 bp and has an overall G + C content of 39%.

View Article and Find Full Text PDF

Complex microbial communities remain poorly characterized despite their ubiquity and importance to human and animal health, agriculture, and industry. Attempts to describe microbial communities by either traditional microbiological methods or molecular methods have been limited in both scale and precision. The availability of genomics technologies offers an unprecedented opportunity to conduct more comprehensive characterizations of microbial communities.

View Article and Find Full Text PDF