Int J Syst Evol Microbiol
July 2021
is a pink yeast-like fungus that is not congeneric with other members of (Basidiomycota, Microbotryomycetes, Sporidiobolales). During our ongoing studies of pink yeasts we determined that was most closely related to (Ascomycota, Leotiomycetes, Thelebolales). A molecular phylogenetic analysis using sequences of the ITS region and the small and large subunit (SSU, LSU) rRNA genes, indicated that four isolates of , including three ex-type isolates, were placed in Thelebolales with maximum support.
View Article and Find Full Text PDFSweat is a secretory fluid that can be a source of unpleasant body odour due to interaction of resident bacteria with sweat components. Identification of glycoproteins in sweat suggests that protein-conjugated glycans may act as binding epitopes for bacteria, as found in other secretory fluids such as human milk, tears and saliva which help to protect epithelial surfaces from infection. We conducted proteomic and glycomic analysis of sweat to reveal an abundance of glycoproteins, predominantly carrying bi-antennary sialylated N-glycans with or without fucose.
View Article and Find Full Text PDFFilamentous fungi are lower eukaryotes increasingly used for expression of foreign proteins ranging from industrial enzymes originating from other fungi and bacteria to proteins of mammalian origin, such as antibodies and growth factors. Their strengths include an excellent capacity for protein secretion and their eukaryotic protein processing machinery. Proteins secreted from filamentous fungi are modified in the secretory pathway, with folding, proteolytic processing, and addition of glycans being the main modifications.
View Article and Find Full Text PDFUniCarbKB ( http://unicarbkb.org ) is a comprehensive resource for mammalian glycoprotein and annotation data. In particular, the database provides information on the oligosaccharides characterized from a glycoprotein at either the global or site-specific level.
View Article and Find Full Text PDFThe human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention.
View Article and Find Full Text PDFWe have systematically analysed the ultrastructure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase-overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24 h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24 h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium).
View Article and Find Full Text PDFThere is increasing evidence that secretory fluids such as tears, saliva and milk play an important role in protecting the human body from infection via a washing mechanism involving glycan-mediated adhesion of potential pathogens to secretory glycoproteins. Interaction of sweat with bacteria is well established as the cause of sweat-associated malodor. However, the role of sweat glycoproteins in microbial attachment has received little, if any, research interest in the past.
View Article and Find Full Text PDFThe filamentous fungus Trichoderma reesei is an expression host widely exploited for the production of recombinant proteins. However, its capacity for expressing small peptides (<20 kDa) has remained largely uncharted to date. In this work, we have produced the hormone peptide obestatin fused to the hydrophobin I tag (Obe-HFBI), using the T.
View Article and Find Full Text PDFFront Microbiol
June 2014
Hosts used for the production of recombinant proteins are typically high-protein secreting mutant strains that have been selected for a specific purpose, such as efficient production of cellulose-degrading enzymes. Somewhat surprisingly, sequencing of the genomes of a series of mutant strains of the cellulolytic Trichoderma reesei, widely used as an expression host for recombinant gene products, has shed very little light on the nature of changes that boost high-level protein secretion. While it is generally agreed and shown that protein secretion in filamentous fungi occurs mainly through the hyphal tip, there is growing evidence that secretion of proteins also takes place in sub-apical regions.
View Article and Find Full Text PDFThe UniCarb KnowledgeBase (UniCarbKB; http://unicarbkb.org) offers public access to a growing, curated database of information on the glycan structures of glycoproteins. UniCarbKB is an international effort that aims to further our understanding of structures, pathways and networks involved in glycosylation and glyco-mediated processes by integrating structural, experimental and functional glycoscience information.
View Article and Find Full Text PDFBreastfeeding is known to have many health benefits for a newborn. Not only does human milk provide an excellent source of nutrition, it also contains components that protect against infection from a wide range of pathogens. Some of the protective properties of human milk can be attributed to the immunoglobulins.
View Article and Find Full Text PDFThe hypersecreting mutant Trichoderma reesei RUT-C30 (ATCC 56765) is one of the most widely used strains of filamentous fungi for the production of cellulolytic enzymes and recombinant proteins, and for academic research. The strain was obtained after three rounds of random mutagenesis of the wild-type QM6a in a screening program focused on high cellulase production and catabolite derepression. Whereas RUT-C30 achieves outstanding levels of protein secretion and high cellulolytic activity in comparison to the wild-type QM6a, recombinant protein production has been less successful.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2011
Coprophilous fungi inhabit herbivore feces, secreting enzymes to degrade the most recalcitrant parts of plant biomass that have resisted the digestive process. Consequently, the secretomes of coprophilous fungi have high potential to contain novel and efficient plant cell wall degrading enzymes of biotechnological interest. We have used one-dimensional and two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), and quadrupole time-of-flight liquid chromatography-tandem mass spectrometry (Q-TOF LC-MS/MS) to identify proteins from the secretome of the coprophilous fungus Doratomyces stemonitis C8 (EU551185) isolated from koala feces.
View Article and Find Full Text PDFSecreted fungal proteins with mannanase activity were identified by mass spectrometry of bands excised from a Congo Red stained zymogram containing locust bean gum as substrate. This technique circumvents the need to locate corresponding bands on a parallel gel without substrate and provides good accuracy in targeting proteins for identification.
View Article and Find Full Text PDF