Publications by authors named "Robyn Mayberry"

The genetic regulatory network controlling early fate choices during human blood cell development are not well understood. We used human pluripotent stem cell reporter lines to track the development of endothelial and haematopoietic populations in an model of human yolk-sac development. We identified SOX17CD34CD43 endothelial cells at day 2 of blast colony development, as a haemangioblast-like branch point from which SOX17CD34CD43 blood cells and SOX17CD34CD43 endothelium subsequently arose.

View Article and Find Full Text PDF

We describe the generation and characterization of 5 human induced pluripotent stem cell (iPSC) lines derived from peripheral blood mononuclear cells (PBMCs) of healthy adult individuals. The PBMCs were reprogrammed using non-integrating Sendai viruses containing the reprogramming factors POU5F1 (OCT4), SOX2, KLF4 and MYC. The iPSC lines exhibited a normal karyotype, expressed pluripotency markers and differentiated into cells representative of the three embryonic germ layers.

View Article and Find Full Text PDF

Background: Recent studies have identified stem/progenitor cells in human and mouse uterine epithelium, which are postulated to be responsible for tissue regeneration and proliferative disorders of human endometrium. These progenitor cells are thought to be derived from Müllerian duct (MD), the primordial female reproductive tract (FRT).

Methodology/principal Findings: We have developed a model of human reproductive tract development in which inductive neonatal mouse uterine mesenchyme (nMUM) is recombined with green fluorescent protein (GFP)-tagged human embryonic stem cells (hESCs); GFP-hESC (ENVY).

View Article and Find Full Text PDF

Slain1 was originally identified as a novel stem cell-associated gene in transcriptional profiling experiments comparing mouse and human embryonic stem cells (ESCs) and their immediate differentiated progeny. In order to obtain further insight into the potential function of Slain1, we examined the expression of beta-galactosidase in a gene-trap mouse line in which a beta-geo reporter gene was inserted into the second intron of Slain1. In early stage embryos (E7.

View Article and Find Full Text PDF

Human ESCs (hESCs) are a valuable tool for the study of early human development and represent a source of normal differentiated cells for pharmaceutical and biotechnology applications and ultimately for cell replacement therapies. For all applications, it will be necessary to develop assays to validate the efficacy of hESC differentiation. We explored the capacity for FTIR spectroscopy, a technique that rapidly characterises cellular macromolecular composition, to discriminate mesendoderm or ectoderm committed cells from undifferentiated hESCs.

View Article and Find Full Text PDF