Background: Idiopathic Pulmonary Fibrosis (IPF) is the most common and progressive form of the interstitial lung diseases, leading most patients to require lung transplants to survive. Despite the relatively well-defined role of the fibroblast in the progression of IPF, it is the alveolar type II epithelial cell (AEC2) that is now considered the initiation site of damage, driver of disease, and the most efficacious therapeutic target for long-term resolution. Based on our previous studies, we hypothesize that altered lactate metabolism in AEC2 plays a pivotal role in IPF development and progression, affecting key cellular and molecular interactions within the pulmonary microenvironment.
View Article and Find Full Text PDFThe appearance of myofibroblasts is generally thought to be the underlying cause of the fibrotic changes that underlie idiopathic pulmonary fibrosis. However, the cellular/molecular mechanisms that account for the fibroblast-myofibroblast differentiation/activation in idiopathic pulmonary fibrosis remain poorly understood. We investigated the functional role of hyaluronan receptor CD44V6 (CD44 containing variable exon 6 (v6)) for differentiation of lung fibroblast to myofibroblast phenotype.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2015
Because of the many energy-demanding functions they perform and their physical location in the lung, alveolar epithelial type II (ATII) cells have a rapid cellular metabolism and the potential to influence substrate availability and bioenergetics both locally in the lung and throughout the body. A thorough understanding of ATII cell metabolic function in the healthy lung is necessary for determining how metabolic changes may contribute to pulmonary disease pathogenesis; however, lung metabolism is poorly understood at the cellular level. Here, we examine lactate utilization by primary ATII cells and the ATII model cell line, MLE-15, and link lactate consumption directly to mitochondrial ATP generation.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2014
Although many lung diseases are associated with hypoxia, alveolar type II epithelial (ATII) cell impairment, and pulmonary surfactant dysfunction, the effects of O(2) limitation on metabolic pathways necessary to maintain cellular energy in ATII cells have not been studied extensively. This report presents results of targeted assays aimed at identifying specific metabolic processes that contribute to energy homeostasis using primary ATII cells and a model ATII cell line, mouse lung epithelial 15 (MLE-15), cultured in normoxic and hypoxic conditions. MLEs cultured in normoxia demonstrated a robust O(2) consumption rate (OCR) coupled to ATP generation and limited extracellular lactate production, indicating reliance on oxidative phosphorylation for ATP production.
View Article and Find Full Text PDF