We present a neutron spin echo (NSE) investigation to examine the impact of macromolecular crowding on the dynamics of single-chain nanoparticles (SCNPs), serving as synthetic models for biomacromolecules with flexibility and internal degrees of freedom, such as intrinsically disordered proteins (IDPs). In particular, we studied the dynamics of a medium-size poly(methyl methacrylate) (PMMA)-based SCNP (33 kDa) in solutions with low- (10 kDa) and high- (100 kDa) molecular weight analogous deuterated PMMA linear crowders. The dynamic structure factors of the SCNPs in dilute solution show certain degrees of freedom, yet the analysis in terms of the Zimm model reveals high internal friction that effectively stiffens the chain-a phenomenon also observed for IDPs.
View Article and Find Full Text PDFThe conformation of poly(methyl methacrylate) (PMMA)-based single-chain nanoparticles (SCNPs) and their corresponding linear precursors in the presence of deuterated linear PMMA in deuterated dimethylformamide (DMF) solutions has been studied by small-angle neutron scattering (SANS). The SANS profiles were analyzed in terms of a three-component random phase approximation (RPA) model. The RPA approach described well the scattering profiles in dilute and crowded solutions.
View Article and Find Full Text PDFIn this work, we present a Deuteron Nuclear Magnetic Resonance (DNMR) study of the non-symmetric odd liquid crystal dimer -(4-cyanobiphenyl-4'-yloxy)--(1-pyrenimine-benzylidene-4'-oxy) heptane (CBO7O.Py), formed by a pro-mesogenic cyanobiphenyl unit and a bulky pyrene-containing unit, linked alkoxy flexible chain. We have synthesized two partially deuterated samples: one with the deuterium atoms in the cyanobiphenyl moiety (dCBO7O.
View Article and Find Full Text PDFWe have performed dielectric spectroscopy and thermally stimulated-depolarization-current experiments to study the molecular dynamics of the twist-bend nematic phase close to the glass transition of two members of the 1″,7'-bis(4-cyanobiphenyl-4'-yl)alkane homologous series (CBnCB): the liquid crystal (LC) dimers CB9CB and CB7CB, as well as a binary mixture of both. By doping CB9CB with a small quantity of CB7CB, the crystallization is inhibited when cooling the sample down, while the bulk properties of CB9CB are retained and we can investigate the supercooled behavior close to the glass transition. The study reveals that the inter- and intramolecular interactions of the mixture are similar to those of pure CB9CB and confirms that there is a single glass transition in symmetric LC dimers.
View Article and Find Full Text PDFSingle-chain polymer nanoparticles (SCNPs) are soft nano-objects consisting of uni-macromolecular chains collapsed to a certain degree by intramolecular crosslinking. The similarities between the behaviour of SCNPs and that of intrinsically disordered proteins suggest that SCNPs in concentrated solutions can be used as models to design artificial micro-environments, which mimic many of the general aspects of cellular environments. In this work, the self-assembly into SCNPs of an amphiphilic random copolymer, composed by oligo(ethylene glycol)methyl ether methacrylate (OEGMA) and 2-acetoacetoxy ethyl methacrylate (AEMA), has been investigated by means of the dielectric relaxation of water.
View Article and Find Full Text PDFPoly(2,5-alkylene furanoate)s are bio-based, smart, and innovative polymers that are considered the most promising materials to replace oil-based plastics. These polymers can be synthesized using ecofriendly approaches, starting from renewable sources, and result into final products with properties comparable and even better than those presented by their terephthalic counterparts. In this work, we present the molecular dynamics of four 100% bio-based poly(alkylene 2,5-furanoate)s, using broadband dielectric spectroscopy measurements that covered a wide temperature and frequency range.
View Article and Find Full Text PDFSingle-chain polymer nanoparticles (SCNPs) obtained through chain collapse by intramolecular cross-linking are attracting increasing interest as components of all-polymer nanocomposites, among other applications. We present a dielectric relaxation study on the dynamics of mixtures of poly(vinyl methyl ether) (PVME) and polystyrene (PS)-based SCNPs with various compositions. Analogous dielectric measurements on a miscible blend of PVME with the linear precursor chains of the SCNPs are taken as reference for this study.
View Article and Find Full Text PDFAccess to completely deuterated single-chain nanoparticles (dSCNPs) has remained an unresolved issue. Herein, the first facile and efficient procedure to produce dSCNPs is reported, which comprises: i) the use of commercially available perdeuterated cyclic ether monomers as starting reagents, ii) a ring-opening copolymerization process performed in bulk to produce a neat dSCNP precursor, iii) a standard azidation reaction to decorate this precursor with azide moieties, and iv) a facile intramolecular azide photodecomposition step carried out under UV irradiation at high dilution providing with highly valuable, completely deuterated soft nano-objects from the precursor. dSCNPs are used to investigate by means of neutron-scattering measurements the form factor (radius of gyration, scaling exponent) of polyethylene oxide (PEO) chains in nanocomposites with different amounts of dSCNPs.
View Article and Find Full Text PDFThe synthesis and characterisation of the nonsymmetric liquid crystal dimer, 1-(4-cyanobiphenyl-4'-yloxy)-6-(4-cyanobiphenyl-4'-yl)hexane (CB6OCB) is reported. An enantiotropic nematic (N)-twist-bend nematic (NTB) phase transition is observed at 109 °C and a nematic-isotropic phase transition at 153 °C. The NTB phase assignment has been confirmed using polarised light microscopy, freeze fracture transmission electron microscopy (FFTEM), (2)H-NMR spectroscopy, and X-ray diffraction.
View Article and Find Full Text PDFWe report a comprehensive dielectric characterization of a liquid crystalline binary mixture composed of the symmetric mesogenic dimer CB7CB and the nonsymmetric mesogenic dimer FFO9OCB. In addition to the high-temperature nematic phase, such a binary mixture shows a twist-bend nematic phase at room temperature which readily vitrifies on slow cooling. Changes in the conformational distribution of the dimers are reflected in the dielectric permittivity and successfully analyzed by means of an appropriate theoretical model.
View Article and Find Full Text PDFTwo isomeric cyanostilbene photoswitchable bent-core mesogens with polar liquid crystal phases in which macroscopic polarization and luminescence can be light-modulated are introduced. Z/E isomerization or [2+2] cycloaddition photochemical processes occur depending on the chemical structure, which make the compounds very innovative multifunctional advanced materials.
View Article and Find Full Text PDFCorrection for 'Miscibility studies of two twist-bend nematic liquid crystal dimers with different average molecular curvatures. A comparison between experimental data and predictions of a Landau mean-field theory for the NTB-N phase transition' by D. O.
View Article and Find Full Text PDFWe report a calorimetric study of a series of mixtures of two twist-bend liquid crystal dimers, the 1'',7''-bis(4-cyanobiphenyl)-4'-yl heptane (CB7CB) and 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane (FFO9OCB), the molecules of which have different effective molecular curvatures. High-resolution heat capacity measurements in the vicinity of the NTB-N phase transition for a selected number of binary mixtures clearly indicate a first order NTB-N phase transition for all the investigated mixtures, the strength of which decreases when the nematic range increases. Published theories predict a second order NTB-N phase transition, but we have developed a self-consistent mean field Landau model using two key order parameters: a symmetric and traceless tensor for the orientational order and a short-range vector field which is orthogonal to the helix axis and rotates around of the heliconical structure with an extremely short periodicity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2015
The nature of the nematic-nematic phase transition in the liquid crystal dimer 1″,9″-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and (2)H NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (N(TB)), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the N(TB)-N phase transition, which is found to be weakly first order, but close to tricritical.
View Article and Find Full Text PDFThis paper reports a novel liquid crystal phase having the characteristics of a twist-bend nematic phase formed by a non-symmetric ether-linked liquid crystal dimer. The dimer 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane (FFO9OCB) exhibits two liquid-crystalline phases on cooling at a sufficiently high rate from the isotropic phase. The high temperature mesophase has been reported in the literature as nematic and confirmed in this study.
View Article and Find Full Text PDFWe report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + γ-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy.
View Article and Find Full Text PDF