We report on a comparative study of 5.5 nm (embedded in an ordered mesoporous silica matrix) and 100 nm (free) (photo)magnetic CoFe Prussian blue analogue (PBA) particles. Co and Fe K-edge X-ray absorption spectroscopy, X-ray diffraction, infrared spectroscopy, and magnetic measurements point out a core-shell structure of the particles in their ground states.
View Article and Find Full Text PDFCoFe Prussian blue analogues (PBAs) are well-known for their magnetic bistability tuned by external stimuli. The photoswitching properties are due to the electron transfer from Co-NC-Fe to Co-NC-Fe linkage, accompanied by the spin change of the Co ions (HS stands for high spin and LS for low spin). In this work, we investigated 100 nm particles of the RbCo[Fe(CN)]·11HO PBA (named RbCoFe).
View Article and Find Full Text PDFMesoporous silica monoliths with various ordered nanostructures containing transition metal M(2+) cations in variable amounts were elaborated and studied. A phase diagram depicting the different phases as a function of the M(2+) salt/tetramethyl orthosilicate (TMOS) and surfactant P123/TMOS ratios was established. Thermal treatment resulted in mesoporous monoliths containing isolated, accessible M(2+) species or condensed metal oxides, hydroxides, and salts, depending on the strength of the interactions between the metal species and the ethylene oxide units of P123.
View Article and Find Full Text PDFWe present herein the first in situ site-selective XAS experiment performed on a proof-of-principle transformation of a mixed-valence compound: the calcination of the K0.1Co(II)4[Co(III)(CN)6]2.7·20H2O Prussian Blue analogue (containing Co(2+) and Co(3+) ions in two different Oh sites) into Co3O4 (containing Co(2+) ions in a Td site and Co(3+) in an Oh site).
View Article and Find Full Text PDF