Climate warming with associated heat waves presents a concerning challenge for ectotherms such as fishes. During heatwaves, the ability to rapidly acclimate can be crucial for survival. However, surprisingly little is known about how different species and life stages vary in their acclimation dynamics, including the magnitude of change in thermal tolerance through acclimation (i.
View Article and Find Full Text PDFAnthropogenically induced changes to the natural world are increasingly exposing organisms to stimuli and stress beyond that to which they are adapted. In aquatic systems, it is thought that certain life stages are more vulnerable than others, with embryos being flagged as highly susceptible to environmental stressors. Interestingly, evidence from across a wide range of taxa suggests that aquatic embryos can hatch prematurely, potentially as an adaptive response to external stressors, despite the potential for individual costs linked with underdeveloped behavioural and/or physiological functions.
View Article and Find Full Text PDFLow-oxygen levels (hypoxia) in aquatic habitats are becoming more common because of global warming and eutrophication. However, the effects on the health/disease status of fishes, the world's largest group of vertebrates, are unclear. Therefore, we assessed how long-term hypoxia affected the immune function of sablefish, an ecologically and economically important North Pacific species, including the response to a formalin-killed Aeromonas salmonicida bacterin.
View Article and Find Full Text PDFSablefish (Anoplopoma fimbria) are an emerging aquaculture species native to the continental shelf of the northern Pacific Ocean. There is limited information on both innate and adaptive immunity for this species and new tools are needed to determine antibody response following vaccination or disease outbreaks. In this paper, a monoclonal antibody, UI-25A, specific to sablefish IgM was produced in mice.
View Article and Find Full Text PDFStudies of heart function and metabolism have been used to predict the impact of global warming on fish survival and distribution, and their susceptibility to acute and chronic temperature increases. Yet, despite the fact that hypoxia and high temperatures often co-occur, only one study has examined the effects of hypoxia on fish thermal tolerance, and the consequences of hypoxia for fish cardiac responses to acute warming have not been investigated. We report that sablefish () did not increase heart rate or cardiac output when warmed while hypoxic, and that this response was associated with reductions in maximum O consumption and thermal tolerance (CT) of 66% and approximately 3°C, respectively.
View Article and Find Full Text PDFEffective vaccine programs against Aeromonas salmonicida have been identified as a high priority area for the sablefish (Anoplopoma fimbria) aquaculture. In this study, we established an A. salmonicida infection model in sablefish to evaluate the efficacy of commercial vaccines and an autogenous vaccine preparation.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
May 2019
Given the potential impacts of global warming, such as increases in temperature and the frequency/severity of hypoxia in marine ecosystems, it is important to study the impacts of these environmental challenges on sea-cage reared aquaculture species. This study focuses on the sablefish (Anoplopoma fimbria), an emerging aquaculture species that has a unique ecology in the wild. For instance, adults inhabit oxygen minimum zones and cool waters at depths up to 1500 m.
View Article and Find Full Text PDF