Maroons in Suriname and French Guiana descend from enslaved Africans who escaped the plantations during colonial times. Maroon farmers still cultivate a large diversity of rice, their oldest staple crop. The oral history and written records of Maroons by colonial authorities provide contrasting perspectives on the origins of Maroon rice.
View Article and Find Full Text PDFGenes of the family PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBP) have been intensely studied in plants for their role in cell (re)programming and meristem differentiation. Recently, sporadic reports of the presence of a new type of PEBP in plants became available, highly similar to the YY-PEBPs of prokaryotes. A comprehensive investigation of their spread, origin, and function revealed conservation across the plant kingdom.
View Article and Find Full Text PDFPlant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis.
View Article and Find Full Text PDFStrigolactones (SLs) are rhizosphere signalling molecules and phytohormones. The biosynthetic pathway of SLs in tomato has been partially elucidated, but the structural diversity in tomato SLs predicts that additional biosynthetic steps are required. Here, root RNA-seq data and co-expression analysis were used for SL biosynthetic gene discovery.
View Article and Find Full Text PDFThe root bacterial microbiome is important for the general health of the plant. Additionally, it can enhance tolerance to abiotic stresses, exemplified by plant species found in extreme ecological niches like deserts. These complex microbe-plant interactions can be simplified by constructing synthetic bacterial communities or SynComs from the root microbiome.
View Article and Find Full Text PDFCleomaceae is closely related to Brassicaceae and includes C, C-C, and C species. Thus, this family represents an interesting system for studying the evolution of the carbon concentrating mechanism. However, inadequate genetic information on Cleomaceae limits their research applications.
View Article and Find Full Text PDFAnalysis of over 100 Cannabis samples quantified for terpene and cannabinoid content and genotyped for over 100,000 single nucleotide polymorphisms indicated that Sativa- and Indica-labelled samples were genetically indistinct on a genome-wide scale. Instead, we found that Cannabis labelling was associated with variation in a small number of terpenes whose concentrations are controlled by genetic variation at tandem arrays of terpene synthase genes.
View Article and Find Full Text PDFSoftening is a hallmark of ripening in fleshy fruits, and has both desirable and undesirable implications for texture and postharvest stability. Accordingly, the timing and extent of pre-harvest ripening and associated textural changes following harvest are key targets for improving fruit quality through breeding. Previously, we identified a large effect locus associated with harvest date and firmness in apple () using genome-wide association studies (GWAS).
View Article and Find Full Text PDFCannabis is an ancient crop representing a rapidly increasing legal market, especially for medicinal purposes. Medicinal and psychoactive effects of Cannabis rely on specific terpenophenolic ligands named cannabinoids. Recent whole-genome sequencing efforts have uncovered variation in multiple genes encoding the final steps in cannabinoid biosynthesis.
View Article and Find Full Text PDFFuranocoumarins are phytoalexins often cited as an example to illustrate the arms race between plants and herbivorous insects. They are distributed in a limited number of phylogenetically distant plant lineages, but synthesized through a similar pathway, which raised the question of a unique or multiple emergence in higher plants. The furanocoumarin pathway was investigated in the fig tree (Ficus carica, Moraceae).
View Article and Find Full Text PDFRhizobium nitrogen-fixing nodule symbiosis occurs in two taxonomic lineages: legumes (Fabaceae) and the genus (Cannabaceae). Both symbioses are initiated upon the perception of rhizobium-secreted lipochitooligosaccharides (LCOs), called Nod factors. Studies in the model legumes and showed that rhizobium LCOs are perceived by a heteromeric receptor complex of distinct Lys motif (LysM)-type transmembrane receptors named NOD FACTOR RECEPTOR1 (LjNFR1) and LjNFR5 () and LYSM DOMAIN CONTAINING RECEPTOR KINASE3 (MtLYK3)-NOD FACTOR PERCEPTION (MtNFP; ).
View Article and Find Full Text PDFAs a model for genetic studies, Arabidopsis thaliana (Arabidopsis) offers great potential to unravel plant genome-related mechanisms that shape the root microbiome. However, the fugitive life history of this species might have evolved at the expense of investing in capacity to steer an extensive rhizosphere effect. To determine whether the rhizosphere effect of Arabidopsis is different from other plant species that have a less fugitive life history, we compared the root microbiome of Arabidopsis to eight other, later succession plant species from the same habitat.
View Article and Find Full Text PDFSome plants fix atmospheric nitrogen by hosting symbiotic diazotrophic rhizobia or bacteria in root organs known as nodules. Such nodule symbiosis occurs in 10 plant lineages in four taxonomic orders: Fabales, Fagales, Cucurbitales, and Rosales, which are collectively known as the nitrogen-fixing clade. Nodules are divided into two types based on differences in ontogeny and histology: legume-type and actinorhizal-type nodules.
View Article and Find Full Text PDFBackground: Variation in floral shapes has long fascinated biologists and its modelling enables testing of evolutionary hypotheses. Recent comparative studies that explore floral shape have largely ignored 3D floral shape. We propose quantifying floral shape by using geometric morphometrics on a virtual3D model reconstructed from 2D photographical data and demonstrate its performance in capturing shape variation.
View Article and Find Full Text PDFStudies on the model plant have led to the common view that lateral roots are exclusively formed from pericycle cells and that the latter are unique in their ability to be reprogrammed into stem cells. By analysing lateral root formation in an evolutionary context, we show that lateral root primordium formation in which cortex, endodermis and pericycle are mitotically activated, is a common and ancestral trait in seed plants, whereas the exclusive involvement of pericycle evolved in the Brassicaceae. Furthermore, the endodermis can also be reprogrammed into stem cells in some species.
View Article and Find Full Text PDFSummary: Analysis and comparison of genomic and transcriptomic datasets have become standard procedures in biological research. However, for non-model organisms no efficient tools exist to visually work with multiple genomes and their metadata, and to annotate such data in a collaborative way. Here we present GeneNoteBook: a web based collaborative notebook for comparative genomics.
View Article and Find Full Text PDFThe legume-rhizobium symbiosis results in nitrogen-fixing root nodules, and their formation involves both intracellular infection initiated in the epidermis and nodule organogenesis initiated in inner root cell layers. () is a nodule-specific transcription factor essential for both processes. These NIN-regulated processes occur at different times and locations in the root, demonstrating a complex pattern of spatiotemporal regulation.
View Article and Find Full Text PDFTwo types of nitrogen-fixing root nodule symbioses are known, rhizobial and actinorhizal symbioses. The latter involve plants of three orders, Fagales, Rosales, and Cucurbitales. To understand the diversity of plant symbiotic adaptation, we compared the nodule transcriptomes of (Datiscaceae, Cucurbitales) and (Rhamnaceae, Rosales); both species are nodulated by members of the uncultured clade, cluster II.
View Article and Find Full Text PDFTrends Plant Sci
January 2019
Root nodule endosymbiosis with nitrogen-fixing bacteria provides plants with unlimited access to fixed nitrogen, but at a significant energetic cost. Nodulation is generally considered to have originated in parallel in different lineages, but this hypothesis downplays the genetic complexity of nodulation and requires independent recruitment of many common features across lineages. Recent phylogenomic studies revealed that genes that function in establishing or maintaining nitrogen-fixing nodules are independently lost in non-nodulating relatives of nitrogen-fixing plants.
View Article and Find Full Text PDFThe perennial woody plants of citrus are one of the most important fruit crops in the world and largely depends on arbuscular mycorrhizal symbiosis (AMS) to obtain essential nutrients from soil. However, the molecular aspects of AMS in citrus and perennial woody plants in general have largely been understudied. We used RNA-sequencing to identify differentially expressed genes in roots of Poncirus trifoliata upon mycorrhization by the AM fungus Glomus versiforme and evaluated their conservation by comparative transcriptome analyses with four herbaceous model plants.
View Article and Find Full Text PDFNodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive.
View Article and Find Full Text PDFThe prominent feature of rhizobia is their molecular dialogue with plant hosts. Such interaction is enabled by the presence of a series of symbiotic genes encoding for the synthesis and export of signals triggering organogenetic and physiological responses in the plant. The genome of the type strain IS123 nodulating the legume , was sequenced and resulted in 317 scaffolds for a total assembled size of 7,889,576 bp.
View Article and Find Full Text PDFNuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA.
View Article and Find Full Text PDF