Publications by authors named "Robin S Dothager"

Development of nanoparticle agents for cancer therapeutics and diagnostics is steadily progressing and was the subject of the inaugural conference entitled, "Nano in Cancer," held during January 12-15, 2011, in Miami, FL. The meeting program was developed by co-chairs David Piwnica-Worms (Washington University in St. Louis), Jan Schnitzer (Proteogenomics Research Institute for Systems Medicine, San Diego), and Karen Wooley (Texas A&M University).

View Article and Find Full Text PDF

Background: Positron emission tomography (PET) allows sensitive, non-invasive analysis of the distribution of radiopharmaceutical tracers labeled with positron (β(+))-emitting radionuclides in small animals and humans. Upon β(+) decay, the initial velocity of high-energy β(+) particles can momentarily exceed the speed of light in tissue, producing Cerenkov radiation that is detectable by optical imaging, but is highly absorbed in living organisms.

Principal Findings: To improve optical imaging of Cerenkov radiation in biological systems, we demonstrate that Cerenkov radiation from decay of the PET isotopes (64)Cu and (18)F can be spectrally coupled by energy transfer to high Stokes-shift quantum nanoparticles (Qtracker705) to produce highly red-shifted photonic emissions.

View Article and Find Full Text PDF
Article Synopsis
  • Mapping protein interactions in cells is crucial for understanding their complexities over relevant time periods.
  • Researchers developed multicolored luciferase-based systems that allow simultaneous observation of two interacting proteins in live cells using a shared substrate.
  • This method was applied to study β-TrCP and its interactions, leading to the identification of GSK3β as a regulating kinase for IκBα processing.
View Article and Find Full Text PDF

PURPOSE: The Wnt/beta-catenin (beta-cat) signaling cascade is a key regulator of development, and dysregulation of Wnt/beta-cat contributes to selected cancers, such as colorectal, breast, and hepatocellular carcinoma, through abnormal activation of Wnt target genes. To identify novel modulators of the Wnt/beta-cat pathway that may emerge as therapeutic targets, we did an unbiased high-throughput RNA interference screen. EXPERIMENTAL DESIGN: A synthetic oligonucleotide small interfering RNA library targeting 691 known and predicted human kinases was screened in Wnt3a-stimulated human cells in a live cell luciferase assay for modulation of Wnt/beta-cat-dependent transcription.

View Article and Find Full Text PDF

Characterization and noninvasive measurement of molecular pathways and biochemistry in living cells, animal models, and humans at the cellular and molecular level is now possible using remote imaging detectors. Positron and single photon emission tomography scanners, highly sensitive cameras for bioluminescence and fluorescence imaging, as well as high-magnetic-field magnetic resonance imaging scanners, can be used to study such diverse processes as signal transduction, receptor density and function, host response to pathogens, cell trafficking, and gene transfer. In many cases, images from more than one modality can be fused, allowing structure-function and multifunction relationships to be studied on a tissue-restricted or regional basis.

View Article and Find Full Text PDF

Many of the obligate steps of physiology and disease are dynamic in time and space, and thus, end-point assays do not always provide a full understanding of these processes. Comprehensive understanding of the functional complexity of protein interactions and cell trafficking requires mapping of cellular and molecular function within complex systems over biologically relevant time scales. New approaches to bioluminescence imaging of cell migration, signaling pathways, drug action, and interacting protein partners in vivo allow the study of biology and disease within the context of living animals.

View Article and Find Full Text PDF

The dimensions of a denatured protein, fully reduced ribonuclease A (r-RNase A), have been measured using synchrotron-based small angle X-ray scattering. The radius of gyration, 34-35 A, is unchanged from 0-6 M guanidinium chloride and from 20-90 degrees C at pH 2.5, and agrees with the known scaling behavior for a multitude of chemically denatured states.

View Article and Find Full Text PDF

As general cytotoxins are still the backbone of anticancer chemotherapy, the identification of selective inducers of cell death in defined cancer types and subtypes is one of the major goals of modern oncology research. Thus, compounds identified with such selectivity have utility as probes of cancer-type-specific biological pathways, and optimized versions have potential in targeted anticancer therapy. Described herein is the discovery that compound 13-D selectively induces apoptotic cell death in white blood cancer cell lines but not in other cancer cell lines.

View Article and Find Full Text PDF

We discuss the implementation of Psi-analysis for the structural characterization of protein folding transition states. In Psi-analysis, engineered bi-histidine metal ion binding sites are introduced at surface positions to stabilize secondary and tertiary structures. The addition of metal ions stabilizes the interaction between the two known histidines in a continuous fashion.

View Article and Find Full Text PDF

Late-stage malignant melanoma is a cancer that is refractory to current chemotherapeutic treatments. The average survival time for patients with such a diagnosis is 6 months. In general, the vast majority of anticancer drugs operate through induction of cell cycle arrest and cell death in either the DNA synthesis (S) or mitosis (M) phase of the cell cycle.

View Article and Find Full Text PDF

We compare the folding transition state (TS) of ubiquitin previously identified by using psi analysis to that determined by using analysis. Both methods attempt to identify interactions and their relative populations at the rate-limiting step for folding. The TS ensemble derived from psi analysis has an extensive native-like chain topology, with a four-stranded beta-sheet network and a portion of the major helix.

View Article and Find Full Text PDF

Spectroscopic studies have identified a number of proteins that appear to retain significant residual structure under even strongly denaturing conditions. Intrinsic viscosity, hydrodynamic radii, and small-angle x-ray scattering studies, in contrast, indicate that the dimensions of most chemically denatured proteins scale with polypeptide length by means of the power-law relationship expected for random-coil behavior. Here we further explore this discrepancy by expanding the length range of characterized denatured-state radii of gyration (R(G)) and by reexamining proteins that reportedly do not fit the expected dimensional scaling.

View Article and Find Full Text PDF

The dimensions and secondary structure content of two proteins which fold in a two-state manner are measured within milliseconds of denaturant dilution using synchrotron-based, stopped-flow small-angle X-ray scattering and far-UV circular dichroism spectroscopy. Even upon a jump to strongly native conditions, neither ubiquitin nor common-type acylphosphatase contract prior to the major folding event. Circular dichroism and fluorescence indicate that negligible amounts of secondary and tertiary structures form in the burst phase.

View Article and Find Full Text PDF

We quantify the degree to which folding occurs along a complex landscape with structurally distinct pathways using psi-analysis in combination with a protein engineering method that identifies native, non-covalent polypeptide interactions and their relative populations at the rate-limiting step. By probing the proximity of two specific partners, this method is extremely well-suited for comparison to theoretical simulations. Using ubiquitin as a model system, we detect individual pathways with site-resolved resolution, demonstrating that the protein folds through a native-like transition state ensemble with a common nucleus that contains heterogeneous features on its periphery.

View Article and Find Full Text PDF