Ligand exchange reactions are commonly used to alter the surface chemistry of metal chalcogenide quantum dots; however, a lack of quantifiable data for these processes limits the rational functionalization of nanomaterials. Here, we quantify the X-type ligand exchange reaction between carboxylate-terminated ligands on PbS quantum dots via1H NMR spectroscopy. Using spectroscopic handles of both the native and exchange ligand, bound and free forms of each have been quantified as a function of exchange ligand concentration.
View Article and Find Full Text PDFSensitized SrTiO3 films were evaluated as potential photoanodes for dye-sensitized photoelectrosynthesis cells (DSPECs). The SrTiO3 films were grown via pulsed laser deposition (PLD) on a transparent conducting oxide (fluorine-doped tin oxide, FTO) substrate, annealed, and then loaded with zinc(II) 5,10,15-tris(mesityl)-20-[(dihydroxyphosphoryl)phenyl] porphyrin (MPZnP). When paired with a platinum wire counter electrode and an Ag/AgCl reference electrode these sensitized films exhibited photocurrent densities on the order of 350 nA/cm(2) under 0 V applied bias conditions versus a normal hydrogen electrode (NHE) and 75 mW/cm(2) illumination at a wavelength of 445 nm.
View Article and Find Full Text PDFWe have conducted an extensive computational study of the structural and energetic properties of select acetonitrile-Group IV (A & B) tetrahalide complexes, both CH3CN-MX4 and (CH3CN)2-MX4 (M = Si, Ge, Ti; X = F, Cl). We have also examined the reactivity of CH3CN with SiF4, SiCl4, GeCl4, and TiCl4, and measured low-temperature IR spectra of thin films containing CH3CN with SiF4, GeCl4, or TiCl4. The six 1:1 complexes fall into two general structural classes.
View Article and Find Full Text PDF