A continuous-gradient approach of material evaporation is employed by L. Shao, M. Käll, and co-workers to fabricate nanostructures with varying geometric parameters such as thickness, lateral positioning, and orientation on a single substrate.
View Article and Find Full Text PDFA continuous-gradient approach of material evaporation is employed to fabricate nanostructures with varying geometric parameters, such as thickness, lateral positioning, and orientation on a single substrate. The method developed for mask lithography allows continuous tuning of the physical properties of a sample. The technique is highly valuable in simplifying the overall optimization process for constructing metasurfaces.
View Article and Find Full Text PDFNanoplasmonic substrates with optimized field-enhancement properties are a key component in the continued development of surface-enhanced Raman scattering (SERS) molecular analysis but are challenging to produce inexpensively in large scale. We used a facile and cost-effective bottom-up technique, colloidal hole-mask lithography, to produce macroscopic dimer-on-mirror gold nanostructures. The optimized structures exhibit excellent SERS performance, as exemplified by detection of 2.
View Article and Find Full Text PDFEmission of photoexcited hot electrons from plasmonic metal nanostructures to semiconductors is key to a number of proposed nanophotonics technologies for solar harvesting, water splitting, photocatalysis, and a variety of optical sensing and photodetector applications. Favorable materials and catalytic properties make systems based on gold and TiO2 particularly interesting, but the internal photoemission efficiency for visible light is low because of the wide bandgap of the semiconductor. We investigated the incident photon-to-electron conversion efficiency of thin TiO2 films decorated with Au nanodisk antennas in an electrochemical circuit and found that incorporation of a Au mirror beneath the semiconductor amplified the photoresponse for light with wavelength λ = 500-950 nm by a factor 2-10 compared to identical structures lacking the mirror component.
View Article and Find Full Text PDFControlling the position and movement of small objects with light is an appealing way to manipulate delicate samples, such as living cells or nanoparticles. It is well-known that optical gradient and radiation pressure forces caused by a focused laser beam enables trapping and manipulation of objects with strength that is dependent on the particle's optical properties. Furthermore, by utilizing transfer of photon spin angular momentum, it is also possible to set objects into rotational motion simply by targeting them with a beam of circularly polarized light.
View Article and Find Full Text PDF