The development of wood-based thermoplastic polymers that can replace synthetic plastics is of high environmental importance, and previous studies have indicated that cellulose-rich fiber containing dialcohol cellulose (ring-opened cellulose) is a very promising candidate material. In this study, molecular dynamics simulations, complemented with experiments, were used to investigate how and why the degree of ring opening influences the properties of dialcohol cellulose, and how temperature and presence of water affect the material properties. Mechanical tensile properties, diffusion/mobility-related properties, densities, glass-transition temperatures, potential energies, hydrogen bonds, and free volumes were simulated for amorphous cellulosic materials with 0-100% ring opening, at ambient and high (150 °C) temperatures, with and without water.
View Article and Find Full Text PDFThis is a first audit of how gambling operators in Finland and Sweden address citizens on social media. The study is able to pinpoint some differences between how gambling operators utilise social media in a state monopoly system (Finland) and in a license-based regulatory framework (Sweden). Curated social media posts from Finland- and Sweden-based accounts in national languages were collected from March 2017, 2018, 2019 and 2020.
View Article and Find Full Text PDFThis study investigated the effect of the average length of substituted side chains in different cellulose esters on water sorption and the water association mechanism. For this purpose, a set of esters with a similar total degree of substitution was selected: cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate. Dynamic vapor sorption was used to determine the effect of the side chain length on sorption, desorption, and the occurrence of water clustering.
View Article and Find Full Text PDFA crucial step in the chemical delignification of wood is the transport of lignin fragments into free liquor; this step is believed to be the rate-limiting step. This study has investigated the diffusion of kraft lignin molecules through model cellulose membranes of various pore sizes (1-200 nm) by diffusion cells, where the lignin molecules diffuse from donor to acceptor cells through a membrane, where diffusion rate increases by pore size. UV-vis spectra of the donor solutions showed greater absorbance at higher wavelengths (~450 nm), which was probably induced by scattering due to presence of large molecules/clusters, while acceptor samples passed through small pore membranes did not.
View Article and Find Full Text PDFThis study aimed to elucidate how the glass transition temperature and water interactions in cellulose esters are affected by the structures of their side chains. Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate with three fractions of butyrates, all having the same total degree of substitution, were selected, and hot-melt pressed. The degree of substitution, structural properties, and water interactions were determined.
View Article and Find Full Text PDFFused deposition modelling-based 3D printing of pharmaceutical products is facing challenges like brittleness and printability of the drug-loaded hot-melt extruded filament feedstock and stabilization of the solid-state form of the drug in the final product. The aim of this study was to investigate the influence of the drug load on printability and physical stability. The poor glass former naproxen (NAP) was hot-melt extruded with Kollidon VA 64 at 10-30% / drug load.
View Article and Find Full Text PDF