Arabidopsis was engineered to produce 21.2 % punicic acid in the seed oil. Possible molecular factors limiting further accumulation of the conjugated fatty acid were investigated.
View Article and Find Full Text PDFPlastidial acyl-acyl carrier protein:sn-glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.
View Article and Find Full Text PDFNanostructured diamond (NSD) films were grown on silicon and Ti-6Al-4V alloy substrates by microwave plasma chemical vapor deposition (MPCVD). NSD Growth rates of 5 µm/h on silicon, and 4 µm/h on Ti-6Al-4V were achieved. In a chemistry of H₂/CH₄/N₂, varying ratios of CH₄/H₂ and N₂/CH₄ were employed in this research and their effect on the resulting diamond films were studied by X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy.
View Article and Find Full Text PDFThe National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development.
View Article and Find Full Text PDFDecontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B.
View Article and Find Full Text PDFSurface enhanced Raman spectroscopy (SERS) has been increasingly utilized as an analytical technique with significant chemical and biological applications (Qian et al 2008 Nat. Biotechnol. 26 83; Fujita et al 2009 J.
View Article and Find Full Text PDFWe investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap.
View Article and Find Full Text PDFReal-time chemical imaging of bacterial activities can facilitate a comprehensive understanding of the dynamics of biofilm structures and functions. Synchrotron-radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy can yield high spatial resolution and label-free vibrational signatures of chemical bonds in biomolecules, but the abundance of water in biofilms has hindered SR-FTIR's sensitivity in investigating bacterial activity. We developed a simple open-channel microfluidic system that can circumvent the water-absorption barrier for chemical imaging of the developmental dynamics of bacterial biofilms with a spatial resolution of several micrometers.
View Article and Find Full Text PDFA procedure is demonstrated to quantitatively evaluate the acoustic radiation forces in microfluidic particle manipulation chambers. Typical estimates of the acoustic pressure and the acoustic radiation force are based on an analytical solution for a simple one-dimensional standing wave pattern. The complexities of a typical microfluidic channel limit the usefulness of this approach.
View Article and Find Full Text PDF