Purpose: Camonsertib is a highly selective and potent inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. Dose-dependent anemia is a class-related on-target adverse event often requiring dose modifications. Individual patient risk factors for the development of significant anemia complicate the selection of a "one-size-fits-all" ATR inhibitor (ATRi) dose and schedule, possibly leading to suboptimal therapeutic doses in patients at low risk of anemia.
View Article and Find Full Text PDFAccurate prediction of human clearance (CL) and volume of distribution at steady state (V) for small molecule drug candidates is an essential component of assessing likely efficacious dose and clinical safety margins. In 2021, the IQ Consortium Human PK Prediction Working Group undertook a survey of IQ member companies to understand the current PK prediction methods being used to estimate these parameters across the pharmaceutical industry. The survey revealed a heterogeneity in approaches being used across the industry (e.
View Article and Find Full Text PDFTherapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months.
View Article and Find Full Text PDFFunctional human-on-a-chip systems hold great promise to enable quantitative translation to in vivo outcomes. Here, we explored this concept using a pumpless heart only and heart:liver system to evaluate the temporal pharmacokinetic/pharmacodynamic (PKPD) relationship for terfenadine. There was a time dependent drug-induced increase in field potential duration in the cardiac compartment in response to terfenadine and that response was modulated using a metabolically competent liver module that converted terfenadine to fexofenadine.
View Article and Find Full Text PDFSources of uncertainty involved in exposure reconstruction for short half-life chemicals were characterized using computational models that link external exposures to biomarkers. Using carbaryl as an example, an exposure model, the Cumulative and Aggregate Risk Evaluation System (CARES), was used to generate time-concentration profiles for 500 virtual individuals exposed to carbaryl. These exposure profiles were used as inputs into a physiologically based pharmacokinetic (PBPK) model to predict urinary biomarker concentrations.
View Article and Find Full Text PDFBackground: Prenatal exposure to perfluoroalkyl substances (PFAS) has been associated with lower birth weight in epidemiologic studies. This association could be attributable to glomerular filtration rate (GFR), which is related to PFAS concentration and birth weight.
Objectives: We used a physiologically based pharmacokinetic (PBPK) model of pregnancy to assess how much of the PFAS-birth weight association observed in epidemiologic studies might be attributable to GFR.
Physiologically based pharmacokinetic (PBPK) models for wild animal populations such as marine mammals typically have a high degree of model uncertainty and variability due to the scarcity of information and the embryonic nature of this field. Parameters values used in marine mammals models are usually taken from other mammalian species (e.g.
View Article and Find Full Text PDFBackground: A recent meta-analysis based on data from > 7,000 pregnancies reported an association between prenatal polychlorinated biphenyl (PCB)-153 exposure and reduced birth weight. Gestational weight gain, which is associated negatively with PCB levels in maternal and cord blood, and positively with birth weight, could substantially confound this association.
Objective: We sought to estimate the influence of gestational weight gain on the association between PCB-153 exposure and birth weight using a pharmacokinetic model.
Background: Biomonitoring of chemicals in the workplace provides an integrated characterization of exposure that accounts for uptake through multiple pathways and physiological parameters influencing the toxicokinetics.
Objectives: We used the case of styrene to (i) determine the best times to sample venous blood and end-exhaled air, (ii) characterize the inter-individual variability in biological levels following occupational exposure and (iii) propose biological limit values using a population physiologically based pharmacokinetic (PBPK) model.
Methods: We performed Monte Carlo simulations with various physiological, exposure and workload scenarios.