Studies of pathogen-host specificity, virulence, and transmissibility are critical for basic research as well as for assessing the pandemic potential of emerging infectious diseases. This is especially true for viruses such as influenza, which continue to affect millions of people annually through both seasonal and occasional pandemic events. Although the influenza virus has been fairly well studied for decades, our understanding of host-cell binding and its relation to viral transmissibility and infection is still incomplete.
View Article and Find Full Text PDFDeletions in the stalk of the influenza neuraminidase (NA) surface protein are associated with increased virulence, but the mechanisms responsible for this enhanced virulence are unclear. Here we use microsecond molecular dynamics simulations to explore the effect of stalk deletion on enzymatic activity, contrasting NA proteins from the A/swine/Shandong/N1/2009 strain both with and without a stalk deletion. By modeling and simulating neuraminidase apo glycoproteins embedded in complex-mixture lipid bilayers, we show that the geometry and dynamics of the neuraminidase enzymatic pocket may differ depending on stalk length, with possible repercussions on the binding of the endogenous sialylated-oligosaccharide receptors.
View Article and Find Full Text PDFChlamydia trachomatis is the most prevalent cause of bacterial sexually transmitted diseases and the leading cause of preventable blindness worldwide. Global control of Chlamydia will best be achieved with a vaccine, a primary target for which is the major outer membrane protein, MOMP, which comprises ~60% of the outer membrane protein mass of this bacterium. In the absence of experimental structural information on MOMP, three previously published topology models presumed a16-stranded barrel architecture.
View Article and Find Full Text PDFInfect Control Hosp Epidemiol
November 2010
Background: Assessments of infectious disease spread in hospitals seldom account for interfacility patient sharing. This is particularly important for pathogens with prolonged incubation periods or carrier states.
Methods: We quantified patient sharing among all 32 hospitals in Orange County (OC), California, using hospital discharge data.
Background: A single measles vaccination provides lifelong protection. No antigenic variants that escape immunity have been observed. By contrast, influenza continually evolves new antigenic variants, and the vaccine has to be updated frequently with new strains.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2004
Severe acute respiratory syndrome coronavirus (SARS-CoV) moved into humans from a reservoir species and subsequently caused an epidemic in its new host. We know little about the processes that allowed the cross-species transfer of this previously unknown virus. I discuss what we have learned about the movement of viruses into humans from studies of influenza A, both how it crossed from birds to humans and how it subsequently evolved within the human population.
View Article and Find Full Text PDFIn pandemic and epidemic forms, influenza causes substantial, sometimes catastrophic, morbidity and mortality. Intense selection from the host immune system drives antigenic change in influenza A and B, resulting in continuous replacement of circulating strains with new variants able to re-infect hosts immune to earlier types. This 'antigenic drift' often requires a new vaccine to be formulated before each annual epidemic.
View Article and Find Full Text PDFThere is preliminary experimental evidence indicating that the major outer-membrane protein (MOMP) of Chlamydia is a porin. We tested this hypothesis for the MOMP of the mouse pneumonitis serovar of Chlamydia trachomatis using two secondary structure prediction methods. First, an algorithm that calculates the mean hydrophobicity of one side of putative beta-strands predicted the positions of 16 transmembrane segments, a structure common to known porins.
View Article and Find Full Text PDFDespite the central role suggested for regulatory mutations in many evolutionary scenarios, there is relatively little information available about the type and extent of regulatory differences between species, or to what extent differences between species are independent of variation within species. To address this issue we have studied the regulatory system of β-glucuronidase, a gene implicated in a murine androgen-inducible pheromone-signalling system. We examined the changes in β-glucuronidase hormonal regulation which have occurred during the radiation of a group of 12 closely related species of mice by assaying β-glucuronidase activity in six different tissues after treatment with estrogen, and with androgen alone and in combination with either estrogen or growth hormone.
View Article and Find Full Text PDFReports of positive associations between allozymic heterozygosity and measures of fitness are routine, but it has not been possible to distinguish between the two preeminent explanations of the phenomenon, dominance and overdominance. We tested several of the assumptions of these hypotheses in our study of the relationship between electrophoretic genotype and three life history traits in loblolly pines (Pinus taeda L.).
View Article and Find Full Text PDFPositive correlations between measures of "fitness" and the number of electrophoretic loci for which an individual is heterozygous have been observed in many species. Two major hypotheses have been proposed to explain this phenomenon: inbreeding depression and overdominance. Until recently, there has been no way to distinguish between these hypotheses.
View Article and Find Full Text PDF