Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons -place cells - encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid.
View Article and Find Full Text PDFHippocampal place cells support spatial memory using sensory information from the environment and self-motion information to localize their firing fields. Currently, there is disagreement about whether CA1 place cells can use pure self-motion information to disambiguate different compartments in environments containing multiple visually identical compartments. Some studies report that place cells can disambiguate different compartments, while others report that they do not.
View Article and Find Full Text PDFThe spatially localized firing of rodent hippocampal place cells is strongly determined by the local geometry of the environment. Over time, however, the cells can acquire additional inputs, including inputs from more distal cues. This is manifest as a change in firing pattern ('remapping') when the new inputs are manipulated.
View Article and Find Full Text PDF