Publications by authors named "Robin Hurst"

Point-of-care tests are highly valuable in providing fast results for medical decisions for greater flexibility in patient care. Many diagnostic tests, such as ELISAs, that are commonly used within clinical laboratory settings require trained technicians, laborious workflows, and complex instrumentation hindering their translation into point-of-care applications. Herein, we demonstrate the use of a homogeneous, bioluminescent-based, split reporter platform that enables a simple, sensitive, and rapid method for analyte detection in clinical samples.

View Article and Find Full Text PDF

Sensitive and selective detection assays are essential for the accurate measurement of analytes in both clinical and research laboratories. Immunoassays that rely on nonoverlapping antibodies directed against the same target analyte (e.g.

View Article and Find Full Text PDF

Gaining insight into the pharmacology of ligand engagement with G-protein coupled receptors (GPCRs) under biologically relevant conditions is vital to both drug discovery and basic research. NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) monitoring competitive binding between fluorescent tracers and unmodified test compounds has emerged as a robust and sensitive method to quantify ligand engagement with specific GPCRs genetically fused to NanoLuc luciferase or the luminogenic HiBiT peptide. However, development of fluorescent tracers is often challenging and remains the principal bottleneck for this approach.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent assays (ELISAs) are used extensively for the detection and quantification of biomolecules in clinical diagnostics as well as in basic research. Although broadly used, the inherent complexities of ELISAs preclude their utility for straightforward point-of-need testing, where speed and simplicity are essential. With this in mind, we developed a bioluminescence-based immunoassay format that provides a sensitive and simple method for detecting biomolecules in clinical samples.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) remain at the forefront of drug discovery efforts. Detailed assessment of features contributing to GPCR ligand engagement in a physiologically relevant environment is imperative to the development of new therapeutics with improved efficacy. Traditionally, binding properties such as affinity and kinetics were obtained using biochemical radioligand binding assays.

View Article and Find Full Text PDF

Identification of physiologically relevant targets for lead compounds emerging from drug discovery screens is often the rate-limiting step toward understanding their mechanism of action and potential for undesired off-target effects. To this end, we developed a streamlined chemical proteomic approach utilizing a single, photoreactive cleavable chloroalkane capture tag, which upon attachment to bioactive compounds facilitates selective isolation of their respective cellular targets for subsequent identification by mass spectrometry. When properly positioned, the tag does not significantly affect compound potency and membrane permeability, allowing for binding interactions with the tethered compound (probe) to be established within intact cells under physiological conditions.

View Article and Find Full Text PDF

Sensitive detection of two biological events in vivo has long been a goal in bioluminescence imaging. Antares, a fusion of the luciferase NanoLuc to the orange fluorescent protein CyOFP, has emerged as a bright bioluminescent reporter with orthogonal substrate specificity to firefly luciferase (FLuc) and its derivatives such as AkaLuc. However, the brightness of Antares in mice is limited by the poor solubility and bioavailability of the NanoLuc substrate furimazine.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are prominent targets to new therapeutics for a range of diseases. Comprehensive assessments of their cellular interactions with bioactive compounds, particularly in a kinetic format, are imperative to the development of drugs with improved efficacy. Hence, we developed complementary cellular assays that enable equilibrium and real-time analyses of GPCR ligand engagement and consequent activation, measured as receptor internalization.

View Article and Find Full Text PDF

Ligand binding assays routinely employ fluorescently-labeled protein ligands to quantify the extent of binding. These ligands are commonly generated through chemical modification of accessible lysine residues, which often results in heterogeneous populations exhibiting variable binding properties. This could be remedied by quantitative, site-specific labeling.

View Article and Find Full Text PDF

Intracellular target affinity and residence time are fundamental aspects of pharmacological mechanism (Lu and Tonge, Curr Opin Chem Biol 14:467-474, 2010). Although various robust biochemical approaches exist to measure these binding characteristics, analysis of compound binding with isolated targets may not accurately reflect engagement in the milieu of living cells. To realize the influence of cellular context, methods are needed that are capable of quantifying affinity and residence time in the presence of the intracellular factors that may impact target engagement.

View Article and Find Full Text PDF

Apoptosis is an important and necessary cell death program which promotes homeostasis and organismal survival. When dysregulated, however, it can lead to a myriad of pathologies from neurodegenerative diseases to cancer. Apoptosis is therefore the subject of intense study aimed at dissecting its pathways and molecular mechanisms.

View Article and Find Full Text PDF

Intracellular signaling pathways are mediated by changes in protein abundance and post-translational modifications. A common approach for investigating signaling mechanisms and the effects induced by synthetic compounds is through overexpression of recombinant reporter genes. Genome editing with CRISPR/Cas9 offers a means to better preserve native biology by appending reporters directly onto the endogenous genes.

View Article and Find Full Text PDF

The benefits provided by phenotypic screening of compound libraries are often countered by difficulties in identifying the underlying cellular targets. We recently described a new approach utilizing a chloroalkane capture tag, which can be chemically attached to bioactive compounds to facilitate the isolation of their respective targets for subsequent identification by mass spectrometry. The tag minimally affects compound potency and membrane permeability, enabling target engagement inside cells.

View Article and Find Full Text PDF

Phenotypic screening of compound libraries is a significant trend in drug discovery, yet success can be hindered by difficulties in identifying the underlying cellular targets. Current approaches rely on tethering bioactive compounds to a capture tag or surface to allow selective enrichment of interacting proteins for subsequent identification by mass spectrometry. Such methods are often constrained by ineffective capture of low affinity and low abundance targets.

View Article and Find Full Text PDF

Cultured mammalian cells provide an environment ideal for producing functional recombinant mammalian proteins. However, low expression levels of recombinant proteins present a challenge for their detection and purification. This unit will focus on HaloTag, a protein fusion tag designed to bind selectively and covalently to a chloroalkane ligand that may be attached to a variety of functional groups, allowing both protein detection and immobilization.

View Article and Find Full Text PDF

Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction.

View Article and Find Full Text PDF

Although cultured mammalian cells are preferred for producing functional mammalian proteins with appropriate post-translational modifications, purification of recombinant proteins is frequently hampered by low expression. We have addressed this by creating a new method configured specifically for mammalian cell culture that provides rapid detection and efficient purification. This approach is based on HaloTag, a protein fusion tag designed to bind rapidly, selectively and covalently to a series of synthetic ligands that can carry a variety of functional groups, including fluorescent dyes for detection or solid supports for purification.

View Article and Find Full Text PDF

Wheat germ cell-free methods provide an important approach for the production of eukaryotic proteins. We have developed a protein expression vector for the TNT((R)) SP6 High-Yield Wheat Germ Cell-Free (TNT WGCF) expression system (Promega) that is also compatible with our T7-based Escherichia coli intracellular expression vector pET15_NESG. This allows cloning of the same PCR product into either one of several pET_NESG vectors and this modified WGCF vector (pWGHisAmp) by In-Fusion LIC cloning (Zhu et al.

View Article and Find Full Text PDF

Protein arrays hold great promise for proteome-scale analysis of protein-protein interaction networks, but the technical challenges have hindered their adoption by proteomics researchers. The crucial issue of design and fabrication of protein arrays have been addressed in several studies, but the detection strategies used for identifying protein-protein interactions have received little attention. In this study, we evaluated six different detection strategies to identify four different protein-protein interaction pairs.

View Article and Find Full Text PDF

For protein microarrays, maintaining protein stability during the slide processing steps of washing, drying, and storage is of major concern. Although several studies have focused on the stability of immobilized antibodies in antibody microarrays, studies on protein-protein interaction arrays and enzyme arrays are lacking. In this paper we used five bait-prey protein interaction pairs and three enzymes to optimize the washing, drying, and storage conditions for protein arrays.

View Article and Find Full Text PDF

Wheat germ based eukaryotic cell-free systems have been shown to be applicable for both functional and structural analyses of proteins. However, the existing methods might require specialized instrumentation and/or a separate mRNA synthesis step. We have developed a DNA based, highly productive, coupled transcription/translation wheat germ cell-free system that incorporates the normally separate mRNA synthesis step and does not require specialized instrumentation.

View Article and Find Full Text PDF

Computerized testing has made significant inroads into veterinary education. Traditional paper-and-pencil examination formats are being replaced by computer-based testing (CBT). Computer-administered, fixed-form tests, because they mimic most closely the familiar fixed-response paper-and-pencil test formats, might intuitively seem to be inherently equivalent to their paper-and-pencil counterparts.

View Article and Find Full Text PDF

In vitro translation is a widely used tool for both analytical and preparative purposes. For analytical purposes, small amounts of proteins are synthesized and visualized by detection of labeled amino acids incorporated during translation. The original strategy of incorporating radioactively labeled amino acids, such as [35S]methionine or [14C]leucine, has been superseded by the addition of antigenic tags or the incorporation of biotin-labeled or BODIPY-FL-labeled amino acids.

View Article and Find Full Text PDF