Cables formed by head-to-tail polymerization of tropomyosin, localized along the length of sarcomeric and cytoskeletal actin filaments, play a key role in regulating a wide range of motile and contractile processes. The stability of tropomyosin cables, their interaction with actin filaments and the functional properties of the resulting co-filaments are thought to be affected by N-terminal acetylation of tropomyosin. Here, we present high-resolution structures of cables formed by acetylated and unacetylated Schizosaccharomyces pombe tropomyosin ortholog Tpm.
View Article and Find Full Text PDFMyosin 5c (Myo5c) is a motor protein that is produced in epithelial and glandular tissues, where it plays an important role in secretory processes. Myo5c is composed of two heavy chains, each containing a generic motor domain, an elongated neck domain consisting of a single α-helix with six IQ motifs, each of which binds to a calmodulin (CaM) or a myosin light chain from the EF-hand protein family, a coiled-coil dimer-forming region and a carboxyl-terminal globular tail domain. Although Myo5c is a low duty cycle motor, when two or more Myo5c-heavy meromyosin (HMM) molecules are linked together, they move processively along actin filaments.
View Article and Find Full Text PDFVarious heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin β4 tag sequences, the p.
View Article and Find Full Text PDFRNase H2 is a specialized enzyme that degrades RNA in RNA/DNA hybrids and deficiency of this enzyme causes a severe neuroinflammatory disease, Aicardi Goutières syndrome (AGS). However, the molecular mechanism underlying AGS is still unclear. Here, we show that RNase H2 is associated with a subset of genes, in a transcription-dependent manner where it interacts with RNA Polymerase II.
View Article and Find Full Text PDFProtein cages hold much promise as carrier systems in nanomedicine, due to their well-defined size, cargo-loading capacity, and inherent biodegradability. In order to make them suitable for drug delivery, they have to be stable under physiological conditions. In addition, often surface modifications are required, for example, to improve cell targeting or reduce the particle immunogenicity by PEGylation.
View Article and Find Full Text PDFThe transthyretin protein is thermodynamically destabilised by mutations in the transthyretin gene, promoting the formation of amyloid fibrils in various tissues. Consequently, impaired autonomic organ function is observed in patients suffering from transthyretin-related familial amyloidotic polyneuropathy (FAP). The influence of individual genetic backgrounds on fibril formation as a potential cause of genotype-phenotype variations needs to be investigated in order to ensure efficient patient-specific therapies.
View Article and Find Full Text PDF