Germline and somatic mutations can give rise to proteins with altered activity, including both gain and loss-of-function. The effects of these variants can be captured in disease-specific reactions and pathways that highlight the resulting changes to normal biology. A disease reaction is defined as an aberrant reaction in which a variant protein participates.
View Article and Find Full Text PDFThe Reactome Knowledgebase (https://reactome.org), an Elixir and GCBR core biological data resource, provides manually curated molecular details of a broad range of normal and disease-related biological processes. Processes are annotated as an ordered network of molecular transformations in a single consistent data model.
View Article and Find Full Text PDFDisease variant annotation in the context of biological reactions and pathways can provide a standardized overview of molecular phenotypes of pathogenic mutations that is amenable to computational mining and mathematical modeling. Reactome, an open source, manually curated, peer-reviewed database of human biological pathways, provides annotations for over 4000 disease variants of close to 400 genes in the context of ∼800 disease reactions constituting ∼400 disease pathways. Functional annotation of disease variants proceeds from normal gene functions, through disease variants whose divergence from normal molecular behaviors has been experimentally verified, to extrapolation from molecular phenotypes of characterized variants to variants of unknown significance using criteria of the American College of Medical Genetics and Genomics (ACMG).
View Article and Find Full Text PDFLimited knowledge about a substantial portion of protein coding genes, known as "dark" proteins, hinders our understanding of their functions and potential therapeutic applications. To address this, we leveraged Reactome, the most comprehensive, open source, open-access pathway knowledgebase, to contextualize dark proteins within biological pathways. By integrating multiple resources and employing a random forest classifier trained on 106 protein/gene pairwise features, we predicted functional interactions between dark proteins and Reactome-annotated proteins.
View Article and Find Full Text PDFWe present JBrowse 2, a general-purpose genome annotation browser offering enhanced visualization of complex structural variation and evolutionary relationships. It retains core features of JBrowse while adding new views for synteny, dotplots, breakpoints, gene fusions, and whole-genome overviews. It allows users to share sessions, open multiple genomes, and navigate between views.
View Article and Find Full Text PDFPathway databases provide descriptions of the roles of proteins, nucleic acids, lipids, carbohydrates, and other molecular entities within their biological cellular contexts. Pathway-centric views of these roles may allow for the discovery of unexpected functional relationships in data such as gene expression profiles and somatic mutation catalogues from tumor cells. For this reason, there is a high demand for high-quality pathway databases and their associated tools.
View Article and Find Full Text PDFMotivation: JBrowse Jupyter is a package that aims to close the gap between Python programming and genomic visualization. Web-based genome browsers are routinely used for publishing and inspecting genome annotations. Historically they have been deployed at the end of bioinformatics pipelines, typically decoupled from the analysis itself.
View Article and Find Full Text PDFAbstract: Reactome is a database of human biological pathways manually curated from the primary literature and peer-reviewed by experts. To evaluate the utility of Reactome pathways for predicting functional consequences of genetic perturbations, we compared predictions of perturbation effects based on Reactome pathways against published empirical observations. Ten cancer-relevant Reactome pathways, representing diverse biological processes such as signal transduction, cell division, DNA repair and transcriptional regulation, were selected for testing.
View Article and Find Full Text PDFThe Reactome Knowledgebase (https://reactome.org), an Elixir core resource, provides manually curated molecular details across a broad range of physiological and pathological biological processes in humans, including both hereditary and acquired disease processes. The processes are annotated as an ordered network of molecular transformations in a single consistent data model.
View Article and Find Full Text PDFWe need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.
View Article and Find Full Text PDFReactome is a manually curated, open-source, open-data knowledge base of biomolecular pathways. Reactome has always provided clear credit attribution for authors, curators and reviewers through fine-grained annotation of all three roles at the reaction and pathway level. These data are visible in the web interface and provided through the various data download formats.
View Article and Find Full Text PDFThe Reactome Knowledgebase (https://reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations in a single consistent data model, an extended version of a classic metabolic map. Reactome functions both as an archive of biological processes and as a tool for discovering functional relationships in data such as gene expression profiles or somatic mutation catalogs from tumor cells.
View Article and Find Full Text PDFModern large-scale biological data analysis often generates a set of significant genes, frequently associated with scores. Pathway-based approaches are routinely performed to understand the functional contexts of these genes. Reactome is the most comprehensive open-access biological pathway knowledge base, widely used in the research community, providing a solid foundation for pathway-based data analysis.
View Article and Find Full Text PDFThe Systems Biology Graphical Notation (SBGN) is an international community effort that aims to standardise the visualisation of pathways and networks for readers with diverse scientific backgrounds as well as to support an efficient and accurate exchange of biological knowledge between disparate research communities, industry, and other players in systems biology. SBGN comprises the three languages Entity Relationship, Activity Flow, and Process Description (PD) to cover biological and biochemical systems at distinct levels of detail. PD is closest to metabolic and regulatory pathways found in biological literature and textbooks.
View Article and Find Full Text PDFNucleic Acids Res
January 2018
The Reactome Knowledgebase (https://reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism, and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression profiles or somatic mutation catalogues from tumor cells.
View Article and Find Full Text PDFMotivation: Reactome is a free, open-source, open-data, curated and peer-reviewed knowledge base of biomolecular pathways. Pathways are arranged in a hierarchical structure that largely corresponds to the GO biological process hierarchy, allowing the user to navigate from high level concepts like immune system to detailed pathway diagrams showing biomolecular events like membrane transport or phosphorylation. Here, we present new developments in the Reactome visualization system that facilitate navigation through the pathway hierarchy and enable efficient reuse of Reactome visualizations for users' own research presentations and publications.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database.
View Article and Find Full Text PDFReactome and WikiPathways are two of the most popular freely available databases for biological pathways. Reactome pathways are centrally curated with periodic input from selected domain experts. WikiPathways is a community-based platform where pathways are created and continually curated by any interested party.
View Article and Find Full Text PDFThe Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model.
View Article and Find Full Text PDFJ Integr Bioinform
September 2015
The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail.
View Article and Find Full Text PDFThe Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail.
View Article and Find Full Text PDFHigh-throughput experiments are routinely performed in modern biological studies. However, extracting meaningful results from massive experimental data sets is a challenging task for biologists. Projecting data onto pathway and network contexts is a powerful way to unravel patterns embedded in seemingly scattered large data sets and assist knowledge discovery related to cancer and other complex diseases.
View Article and Find Full Text PDFStudies indicate that high-grade serous ovarian carcinoma (HGSOC), the most common epithelial ovarian carcinoma histotype, originates from the fallopian tube epithelium (FTE). Risk factors for this cancer include reproductive parameters associated with lifetime ovulatory events. Ovulation is an acute inflammatory process during which the FTE is exposed to follicular fluid containing both pro- and anti-inflammatory molecules, such as interleukin-1 (IL1), tumor necrosis factor (TNF), and cortisol.
View Article and Find Full Text PDF