The synthesis of diindolylamines via the palladium-catalyzed cross-coupling of aminoindoles and bromoindoles has been investigated, and efficient coupling conditions using BrettPhos, Pd(OAc), KCO, and tBuOH have been identified. The diindolylamines were found to be unstable in ambient conditions. Blocking the reactive 3-position of the bromoindole coupling partner with a -butyl group results in a diindolylamine with improved air stability.
View Article and Find Full Text PDFReactions of indigo with quinones in the presence of sodium hydride leads unexpectedly to products containing two indigo subunits; one indigo is featured in a cis configuration and fused via its indole nitrogen atoms to a second indigo at the central C-C bond of the latter. Structural, optical, and redox properties of the new compounds are reported.
View Article and Find Full Text PDFDalton Trans
September 2019
A series of palladium(ii) complexes containing a redox-active, tridentate verdazyl ligand of general formula (verdazyl)PdL (L = Cl, CHCN) are synthesized. The tetrazine core of tridentate verdazyl ligand 5 is flanked by two pyridyl groups, creating a geometry in which the ancillary ligand L is bound trans to the verdazyl ring in the square planar metal complexes. Pd(ii) complexes were isolated with the verdazyl ligand in either its neutral radical charge state (6: L = CHCN, 12: L = Cl) or its closed-shell monoanionic charge state (10: L = CHCN, 9: L = Cl).
View Article and Find Full Text PDFThe synthesis and ligand-centered redox chemistry of palladium complexes bearing two potentially bidentate verdazyl ligands is explored. Reaction of 1,5-diisopropyl-3-pyridin-2-yl-6-oxoverdazyl radical 1 with Pd(NCMe)·2BF gives a complex containing two coordinated verdazyl radicals. The structure of this complex consists of one verdazyl bound to Pd in a bidentate mode and the second verdazyl bound in a monodentate fashion through the pyridine substituent; the fourth coordination site is occupied by a solvent molecule (acetonitrile (3) or dimethyl sulfoxide (4)).
View Article and Find Full Text PDFJ Phys Chem A
September 2016
The protoisomerization (isomerization induced by protonation) mechanisms of indigo as well as indigo di- and monoimine derivatives were investigated using computational chemistry. Both density functional theory (M06-2X) and wave function theory (GMC-QDPT) methods were used to obtain reliable results. A solvation model (C-PCM with CH2Cl2 solvent) was employed to mimic the actual environment of the isomerization.
View Article and Find Full Text PDFIndigo di- and monoimines can be protonated to form stable salts in which the central C=C bond has isomerized from a trans to cis configuration. Deprotonation of these salts regenerates the neutral trans species. The protonation chemistry of indigo is also explored.
View Article and Find Full Text PDFRemote coordination of a Ru(hfac)2 moiety to a chelating N-benzyl tetrazine lowers the C-N homolytic bond dissociation enthalpy by approximately 20 kJ mol(-1). The significant bond strength perturbation is believed to arise as a consequence of metal-ligand redox non-innocence.
View Article and Find Full Text PDFReactivity studies of a Pd(II)-verdazyl complex reveal novel ligand-centred reduction processes which trigger pseudo-reductive elimination at Pd. Reaction of the complex with water induces a ligand-centred redox disproportionation. The reduced verdazyl ligands can also be reversibly protonated.
View Article and Find Full Text PDFReactions of Nindigo-BF2 complexes with Pd(hfac)2 produced mixed complexes with Nindigo binding to both a BF2 and a Pd(hfac) unit. These complexes are the first in which the Nindigo ligand binds two different substrates, and provide a conceptual link between previously reported bis(BF2) and bis(Pd(hfac)) complexes. The new Pd/B complexes have intense near IR absorption near 820 nm, and they undergo multiple reversible oxidations and reductions as probed by cyclic voltammetry experiments.
View Article and Find Full Text PDFThe synthesis and characterization of two new N,N'-diarylverdazyl radical ligands and their corresponding PdCl2 complexes are described. One of the two radicals is of the "Kuhn verdazyl" structure type and was made by adaptation of standard synthetic procedures for this class of verdazyl. The N,N'-diphenyl-6-oxoverdazyl was prepared by hydrolysis of a related tetrazane; the resulting N,N'-diphenylcarbohydrazide was condensed with pyridinecarboxaldehyde and then oxidized to the verdazyl according to standard protocols.
View Article and Find Full Text PDFThe electronic structures of (LX)2Ru(Vd)Ru(LX)2 complexes (Vd = 1,5-diisopropyl-3-(4,6-dimethyl-2-pyrimidinyl)-6-oxoverdazyl radical; LX = acac (acetylacetonate) or hfac (hexafluoroacetylacetonate)) in multiple charge states have been investigated experimentally and computationally. The main focus was to probe the consequences of the interplay between the ruthenium ions and the redox-active verdazyl ligand for possible mixed-valent behavior. Cyclic voltammetry studies reveal one reversible reduction and one reversible oxidation process for both complexes; in addition the acac-based derivative possesses a second reversible oxidation.
View Article and Find Full Text PDFThe electronic structures of (Vd)Ru(LX)(2) complexes (Vd = 1,5-diisopropyl-3-(2-pyridyl)-6-oxoverdazyl radical; LX = acac or hfac) as neutral, cationic, and anionic species have been investigated experimentally and computationally to probe the interplay between the ruthenium ion and the redox-active verdazyl ligand. The cationic complexes were prepared by oxidation of the corresponding neutral species with silver(I) salts. The hfac-based anionic complex was synthesized by reduction of the neutral species with cobaltocene, but the anionic acac analogue could not be prepared.
View Article and Find Full Text PDFReactions of indigo with a variety of substituted anilines produce the corresponding indigo diimines ("Nindigos") in good yields. Nindigo coordination complexes are subsequently prepared by reactions of the Nindigo ligands with Pd(hfac)(2). In most cases, binuclear complexes are obtained in which the deprotonated Nindigo bridges two Pd(hfac) moieties in the expected bis-bidentate binding mode.
View Article and Find Full Text PDFReactions of indigo with anilines provide a simple route to indigo N,N'-diaryldiimines ("Nindigo"), a new binucleating ligand with two beta-diketiminate-type metal binding sites. Bis-palladium complexes have interesting ligand-centred properties such as redox activity and intense near infrared absorption.
View Article and Find Full Text PDFSpectroscopic, structural, and computational studies of verdazyl radical-ruthenium complexes reveal the verdazyl to be a redox-active and non-innocent ligand. The ensuing delocalization of charge is highly sensitive to the nature of the beta-diketonate co-ligands.
View Article and Find Full Text PDFCopper(I) complexes of a diketiminate featuring CF(3) groups on the backbone and dimethylphenyl substituents (4) and a nitroformazan (5) were synthesized and shown by spectroscopy, X-ray crystallography, cyclic voltammetry, and theory to contain copper(I) sites electron-deficient relative to those supported by previously studied diketiminate complexes comprising alkyl or aryl backbone substituents. Despite their electron-poor nature, oxygenation of LCu(CH(3)CN) (L = 4 or 5) at room temperature yielded bis(hydroxo)dicopper(II) compounds and at -80 degrees C yielded bis(mu-oxo)dicopper complexes that were identified on the basis of UV-vis and resonance Raman spectroscopy, spectrophotometric titration results (2:1 Cu/O(2) ratio), electron paramagnetic resonance spectroscopy (silent), and density functional theory calculations. The bis(mu-oxo)dicopper complex supported by 5 exhibited unusual spectroscopic properties and decayed via a novel intermediate proposed to be a metallaverdazyl radical complex, findings that highlight the potential for the formazan ligand to exhibit "noninnocent" behavior.
View Article and Find Full Text PDFThe synthesis and characterization of several formazans containing strong electron-withdrawing substituents (cyano and nitro) in the 3 position of the ligand backbone are described. Reactions of aryldiazonium cations with the conjugated bases of either cyanoacetic acid or nitromethane lead to 1,5-diaryl-3-cyano- or 3-nitroformazans, respectively. When these reactions are carried out in aqueous conditions, the range of aromatic groups is limited by the stability of the diazonium salt.
View Article and Find Full Text PDFThe synthesis and characterization of six transition metal complexes of 3-cyano- and 3-nitroformazans are described. Three different formazans were reacted with nickel(II) to produce complexes with bidentate formazan ligands. Mononuclear NiL2 (L = deprotonated formazan) or binuclear hydroxo-bridged (LNi)2(mu-OH) 2 species were produced depending on the steric bulk on the formazan N-aromatic substituents.
View Article and Find Full Text PDFThe redox properties of verdazyl radicals are presented using cyclic voltammetry techniques. These radicals can be reversibly reduced as well as oxidized. Electron-donating and -withdrawing substituents have significant effects on the oxidation and reduction potentials as well as the cell potential (E(cell) = | E(ox) degrees - E(red) degrees |) for these radicals; a correlation between the electron spin distribution and redox properties is developed.
View Article and Find Full Text PDFTwo benzene-bridged N,N'-bis(isopropyl)6-oxoverdazyl diradicals 7a (1,4-benzene-bridged) and 7b (1,3-benzene-bridged) were prepared and studied by an array of physicochemical techniques aimed at elucidating the intramolecular electronic and magnetic coupling between verdazyl chromophores. The very high stability of these diradicals permits comprehensive investigations of their properties for the first time. The UV-vis spectra suggest negligible direct conjugative overlap involving the radical SOMOs, although significant differences in higher energy absorptions suggest that radical orbitals other than the SOMO are likely communicating via the central p-phenylene bridge in 7a.
View Article and Find Full Text PDFMany kinds of radicals are stable enough to isolate, handle, and store without any special precautions. The diversity in molecular architectures of these stable radicals is sufficiently large that the common factors governing radical stability/persistence, geometric and electronic structure, association/dimerization preferences, and reactivity have generally not been well articulated or appreciated. This review provides a survey of the major classes of stable or persistent organic/organomain group radicals with a view to presenting a unified description of the interdependencies between radical molecular structure and properties.
View Article and Find Full Text PDFFor over two decades there have been intense efforts aimed at the development of alternatives to conventional magnets, particularly materials comprised in part or wholly of molecular components. Such alternatives offer the prospect of realizing magnets fabricated through controlled, low-temperature, solution-based chemistry, as opposed to high-temperature metallurgical routes, and also the possibility of tuning magnetic properties through synthesis. However, examples of magnetically ordered molecular materials at or near room temperature are extremely rare, and the properties of these materials are often capricious and difficult to reproduce.
View Article and Find Full Text PDF