Background: Next-generation sequencing (NGS) assays are highly complex tests that can vary substantially in both their design and intended application. Despite their innumerous advantages, NGS assays present some unique challenges associated with the preanalytical process, library preparation, data analysis, and reporting. According to a number of professional laboratory organization, control materials should be included both during the analytical validation phase and in routine clinical use to guarantee highly accurate results.
View Article and Find Full Text PDFThe National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) trial is a national signal-finding precision medicine study that relies on genomic assays to screen and enroll patients with relapsed or refractory cancer after standard treatments. We report the analytical validation processes for the next-generation sequencing (NGS) assay that was tailored for regulatory compliant use in the trial. The Oncomine Cancer Panel assay and the Personal Genome Machine were used in four networked laboratories accredited for the Clinical Laboratory Improvement Amendments.
View Article and Find Full Text PDFThe National Institute of Standards and Technology (NIST) Standard Reference Materials 2373 is a set of genomic DNA samples prepared from five breast cancer cell lines with certified values for the ratio of the HER2 gene copy number to the copy numbers of reference genes determined by real-time quantitative PCR and digital PCR. Targeted-amplicon, whole-exome, and whole-genome sequencing measurements were used with the reference material to compare the performance of both the laboratory steps and the bioinformatic approaches of the different methods using a range of amplification ratios. Although good reproducibility was observed in each next-generation sequencing method, slightly different HER2 copy numbers associated with platform-specific biases were obtained.
View Article and Find Full Text PDFAlthough next-generation sequencing technologies have been widely adapted for clinical diagnostic applications, an urgent need exists for multianalyte calibrator materials and controls to evaluate the performance of these assays. Control materials will also play a major role in the assessment, development, and selection of appropriate alignment and variant calling pipelines. We report an approach to provide effective multianalyte controls for next-generation sequencing assays, referred to as the control plasmid spiked-in genome (CPSG).
View Article and Find Full Text PDFRobust and analytically validated assays are essential for clinical studies. We outline an analytical validation study of a targeted next-generation sequencing mutation-detection assay used for patient selection in the National Cancer Institute Molecular Profiling-Based Assignment of Cancer Therapy (NCI-MPACT) trial (NCT01827384). Using DNA samples from normal or tumor cell lines and xenografts with known variants, we assessed the sensitivity, specificity, and reproducibility of the NCI-MPACT assay in five variant types: single-nucleotide variants (SNVs), SNVs at homopolymeric (HP) regions (≥3 identical bases), small insertions/deletions (indels), large indels (gap ≥4 bp), and indels at HP regions.
View Article and Find Full Text PDF