Using a channel flow cell (CFC) system, the dissolution kinetics of polycrystalline gypsum-based materials have been examined with the aim of understanding their interaction with water, a property that limits the applications of the material in many situations. ICP (inductively coupled plasma) analysis of elemental concentrations in solution as a function of time yields surface fluxes by using a finite element modeling approach to simulate the hydrodynamic behavior within the CFC. After correction for surface roughness, a value for the intrinsic dissolution flux into water of pure polycrystalline gypsum, CaSO(4).
View Article and Find Full Text PDFTime-resolved energy dispersive X-ray diffraction (EDXRD) data have been measured in situ from cast blocks of gypsum, CaSO(4) x 2 H(2)O, in the presence of reactive phosphate solutions under hydrothermal conditions (100 < or = T < or = 180 degrees C) in order to understand the formation of hydroxyapatite monoliths, for applications such as in artificial bone or dental materials. Measurement of data in short (60 s) intervals has thus permitted information about the kinetics and mechanism of transformation of gypsum to hydroxyapatite to be obtained in a non-invasive way, avoiding the irreversible conversion of hydrous intermediate phases that would occur on quenching. At the lower temperatures used gypsum first converts to an amorphous intermediate phase during reaction, but as the temperature is raised to 130 degrees C and above, hydrothermal dehydration to the subhydrate CaSO(4) x 1/2 H(2)O always occurs before hydroxyapatite crystallises.
View Article and Find Full Text PDF