Publications by authors named "Robin Chaudret"

The substitution of natural, bio-based and/or biodegradable polymers for those of petrochemical origin in consumer formulations has become an active area of research and development as the sourcing and destiny of material components becomes a more critical factor in product design. These polymers often differ from their petroleum-based counterparts in topology, raw material composition and solution behaviour. Effective and efficient reformulation that maintains comparable cosmetic performance to existing products requires a deep understanding of the differences in frictional behaviour between polymers as a function of their molecular structure.

View Article and Find Full Text PDF

We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles.

View Article and Find Full Text PDF

In this contribution, we propose a deeper understanding of the electronic effects affecting the nucleation of water around the Au and Hg metal cations using quantum chemistry. To do so, and in order to go beyond usual energetical studies, we make extensive use of state of the art quantum interpretative techniques combining ELF/NCI/QTAIM/EDA computations to capture all ranges of interactions stabilizing the well characterized microhydrated structures. The Electron Localization Function (ELF) topological analysis reveals the peculiar role of the Au+ outer-shell core electrons (subvalence) that appear already spatially preorganized once the addition of the first water molecule occurs.

View Article and Find Full Text PDF

The high diastereoselectivity of the hydrogenation of artemisinate by diazene to form dihydroartemisinate (diastereoselective ratio, dr, 97:3) necessary for efficient production of artemisin has been rationalized by state-of-the-art DFT calculations and identification of the noncovalent interactions by coupled ELF/NCI analysis. Remarkably, a single conformer of artemisinate is responsible for the high diastereoselectivity of the reaction. NMR studies confirm the preference for a single conformation that is found to be identical to that predicted by the calculations.

View Article and Find Full Text PDF

Noncovalent interactions play a central role in many chemical and biological systems. In a previous study, Johnson developed a NonCovalent Interaction (NCI) index to characterize and visualize different types of weak interactions. To apply the NCI analysis to fluctuating environments as in solution phase, we here develop a new Averaged NonCovalent Interaction (i.

View Article and Find Full Text PDF

The combined Electron Localization Funtion (ELF)/ Noncovalent Interaction (NCI) topological analysis (Gillet et al. J. Chem.

View Article and Find Full Text PDF

In biological systems involving nucleosides, nucleotides, or their respective analogs, the ribose sugar moiety is the most common reaction site, for example, during DNA replication and repair. However, nucleic bases, which comprise a sizable portion of nucleotide molecules, are usually unreactive during such processes. In quantum mechanical∕molecular simulations of nucleic acid reactivity, it may therefore be advantageous to describe specific ribosyl or ribosyl phosphate groups quantum mechanically and their respective nucleic bases with a molecular mechanics potential function.

View Article and Find Full Text PDF

Ketosteroid isomerase (Δ⁵-3-keto steroid isomerase or steroid Δ-isomerase) is a highly efficient enzyme at the centre of current debates on enzyme catalysis. We have modelled the reaction mechanism of the isomerization of 3-oxo-Δ⁵-steroids into their Δ⁴-conjugated isomers using high-level combined quantum mechanics/molecular mechanics (QM/MM) methods, and semi-empirical QM/MM molecular dynamics simulations. Energy profiles were obtained at various levels of QM theory (AM1, B3LYP and SCS-MP2).

View Article and Find Full Text PDF

A cross ELF-NCI analysis is tested over prototypical organic reactions. The synergetic use of ELF and NCI enables the understanding of reaction mechanisms since each method can respectively identify regions of strong and weak electron pairing. Chemically intuitive results are recovered and enriched by the identification of new features.

View Article and Find Full Text PDF

4-Oxalocrotonate tautomerase (4-OT), a member of tautomerase superfamily, is an essential enzyme in the degradative metabolism pathway occurring in the Krebs cycle. The proton transfer process catalyzed by 4-OT has been explored previously using both experimental and theoretical methods; however, the elaborate catalytic mechanism of 4-OT still remains unsettled. By combining classical molecular mechanics with quantum mechanics, our results demonstrate that the native hexametric 4-OT enzyme, including six protein monomers, must be employed to simulate the proton transfer process in 4-OT due to protein-protein steric and electrostatic interactions.

View Article and Find Full Text PDF

We have quantified the extent of the nonadditivity of the short-range exchange-repulsion energy, E(exch-rep), in several polycoordinated complexes of alkali, alkaline-earth, transition, and metal cations. This was done by performing ab initio energy decomposition analyses of interaction energies in these complexes. The magnitude of E(exch-rep(n-body, n > 2)) was found to be strongly cation-dependent, ranging from close to zero for some alkali metal complexes to about 6 kcal/mol for the hexahydrated Zn(2+) complex.

View Article and Find Full Text PDF

DNA polymerases require two divalent metal ions in the active site for catalysis. Mg(2+) has been confirmed to be the most probable cation utilized by most polymerases in vivo. Other metal ions are either potent mutagens or inhibitors.

View Article and Find Full Text PDF

Non-covalent interactions hold the key to understanding many chemical, biological, and technological problems. Describing these non-covalent interactions accurately, including their positions in real space, constitutes a first step in the process of decoupling the complex balance of forces that define non-covalent interactions. Because of the size of macromolecules, the most common approach has been to assign van der Waals interactions (vdW), steric clashes (SC), and hydrogen bonds (HBs) based on pairwise distances between atoms according to their van der Waals radii.

View Article and Find Full Text PDF

We present a modified definition of the Electron Pair Localization Function (EPLF), initially defined within the framework of quantum Monte Carlo approaches [ Scemama , A. ; Caffarel , M. ; Chaquin , P.

View Article and Find Full Text PDF

The hydration free energy, structure, and dynamics of the zinc divalent cation are studied using a polarizable force field in molecular dynamics simulations. Parameters for the Zn(2+) are derived from gas-phase ab initio calculation of Zn(2+)-water dimer. The Thole-based dipole polarization is adjusted based on the Constrained Space Orbital Variations (CSOV) calculation while the Symmetry Adapted Perturbation Theory (SAPT) approach is also discussed.

View Article and Find Full Text PDF