Publications by authors named "Robin Carrell"

The angiotensin peptides that control blood pressure are released from the non-inhibitory plasma serpin, angiotensinogen, on cleavage of its extended N-terminal tail by the specific aspartyl-protease, renin. Angiotensinogen had previously been assumed to be a passive substrate, but we describe here how recent studies reveal an inherent conformational mechanism that is critical to the cleavage and release of the angiotensin peptides and consequently to the control of blood pressure. A series of crystallographic structures of angiotensinogen and its derivative forms, together with its complexes with renin show in molecular detail how the interaction with renin triggers a profound shift of the amino-terminal tail of angiotensinogen with modulation occurring at several levels.

View Article and Find Full Text PDF

Kallistatin, also known as SERPINA4, has been implicated in the regulation of blood pressure and angiogenesis, due to its specific inhibition of tissue kallikrein 1 (KLK1) and/or by its heparin binding ability. The binding of heparin on kallistatin has been shown to block the inhibition of KLK1 by kallistatin but the detailed molecular mechanism underlying this blockade is unclear. Here we solved the crystal structures of human kallistatin and its complex with heparin at 1.

View Article and Find Full Text PDF

The renin-angiotensin cascade is a hormone system that regulates blood pressure and fluid balance. Renin-mediated cleavage of the angiotensin I peptide from the N terminus of angiotensinogen (AGT) is the rate-limiting step of this cascade; however, the detailed molecular mechanism underlying this step is unclear. Here, we solved the crystal structures of glycosylated human AGT (2.

View Article and Find Full Text PDF

Angiotensinogen (AGT) is a critical protein in the renin-angiotensin-aldosterone system and may have an important role in the pathogenesis of pre-eclampsia. The disulphide linkage between cysteines 18 and 138 has a key role in the redox switch of AGT which modulates the release of angiotensin I with consequential effects on blood pressure. In this paper, we report a quantitative targeted LC-MS/MS method for the reliable measurement of the total AGT and its reduced and oxidised forms in human plasma.

View Article and Find Full Text PDF

The adaptation of the serpin framework and its mechanism to perform diverse functions is epitomised in the hormone carriers of the blood. Thyroxine and the corticosteroids are transported bound in a 1:1 ratio on almost identical sites in the two homologous binding-globulins, TBG and CBG. Recent structural findings show an equilibrated, rather than on-and-off, release of the hormones from the carriers, reflecting small reversible movements of the hinge region of the reactive loop that modify the conformational flexibility of the underlying hormone-binding site.

View Article and Find Full Text PDF

Cortisol is transported in the blood by corticosteroid-binding globulin (CBG), a non-inhibitory member of the serpin family of serine protease inhibitors. Recent structural advances reveal how CBG acts as a releasing-agent as well as a carrier of cortisol. Taken together, the structures of the various forms of CBG and of the closely related thyroxine binding-globulin, show how the inherent conformational mechanism of the serpins has been adapted to modulate hormone release to the tissues by changes in binding affinities.

View Article and Find Full Text PDF

The Z mutation (E342K) of α1-antitrypsin (α1-AT), carried by 4% of Northern Europeans, predisposes to early onset of emphysema due to decreased functional α1-AT in the lung and to liver cirrhosis due to accumulation of polymers in hepatocytes. However, it remains unclear why the Z mutation causes intracellular polymerization of nascent Z α1-AT and why 15% of the expressed Z α1-AT is secreted into circulation as functional, but polymerogenic, monomers. Here, we solve the crystal structure of the Z-monomer and have engineered replacements to assess the conformational role of residue Glu-342 in α1-AT.

View Article and Find Full Text PDF

The hormone thyroxine that regulates mammalian metabolism is carried and stored in the blood by thyroxine-binding globulin (TBG). We demonstrate here that the release of thyroxine from TBG occurs by a temperature-sensitive mechanism and show how this will provide a homoeostatic adjustment of the concentration of thyroxine to match metabolic needs, as with the hypothermia and torpor of small animals. In humans, a rise in temperature, as in infections, will trigger an accelerated release of thyroxine, resulting in a predictable 23% increase in the concentration of free thyroxine at 39°C.

View Article and Find Full Text PDF

Context: Recent studies of corticosteroid-binding globulin (CBG) indicate that it does not merely transport cortisol passively but also actively regulates its release in the circulation. We show how CBG binding affinity can vary to give changes in free cortisol concentration in a physiologically relevant range.

Objective: The objective was to determine how the binding affinity of plasma CBG is affected by glycosylation, changes in body temperature, and the conformational change induced by proteases at sites of inflammation.

View Article and Find Full Text PDF

The hormone-carrying serpins, thyroxine- and corticosteroid-binding globulins, TBG and CBG, provide a clear example of the way the serpin conformational mechanism can be adapted not only to give an irreversible switching-off of function but also more significantly to allow a constant dynamic modulation of activity. This is illustrated here with the demonstration that hormone release from both TBG and CBG is responsive to changes in ambient temperature and specifically to changes in body temperature. An exception to this adaptation of the serpin mechanism is seen with another family member, angiotensinogen, in which hormone release is modulated by a redox switch and is apparently independent of changes in the serpin framework.

View Article and Find Full Text PDF

The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG.

View Article and Find Full Text PDF

Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 Å resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail.

View Article and Find Full Text PDF

Background: Only 5% of circulating cortisol is active and unbound to carrier proteins. Because cortisol levels vary rapidly due to the pulsatile nature of cortisol secretion, the dynamics of cortisol binding are critical determinants of tissue levels of free cortisol and consequent hormonal signaling. The major glucocorticoid carrier protein is corticosteroid binding globulin (CBG), a member of the serpin family that undergoes conformational changes to bind and release hormones.

View Article and Find Full Text PDF

Protein Z (PZ) binds to PZ-dependent inhibitor (ZPI) and accelerates the inhibition of the coagulation protease, activated factor X (FXa), in the presence of phospholipids and Ca2+. A 2.3A resolution crystal structure of PZ complexed with ZPI shows that ZPI is a typical serine protease inhibitor and that PZ has a serine protease fold with distorted oxyanion hole and S1 pocket.

View Article and Find Full Text PDF

Many disorders, including Alzheimer's, the prion encephalopathies and other neurodegenerative diseases, result from aberrant protein aggregation. Surprisingly, cellular toxicity is often due not to the highly-ordered aggregates but to the oligomers that precede their formation. Using serpins as a paradigm, we show how the active and infective interface of oligomers is inherently toxic and can promiscuously bind to unrelated peptides, including neurotransmitters.

View Article and Find Full Text PDF

Corticosteroids are transported in the blood by a serpin, corticosteroid-binding globulin (CBG), and their normally equilibrated release can be further triggered by the cleavage of the reactive loop of CBG. We report here the crystal structures of cleaved human CBG (cCBG) at 1.8-A resolution and its complex with cortisol at 2.

View Article and Find Full Text PDF

The serine protease inhibitor (serpin) family can readily form long-chain polymers by a process that underlies a variety of diseases. We show here that monomers of plasma serpins alpha(1)-antitrypsin and antithrombin are stable on incubation with the rate-limiting step in their polymerisation being the formation of the initial dimer. Once formed, the dimers readily interlink to form tetramers and can bind monomers to form trimers and longer oligomers.

View Article and Find Full Text PDF

The archetypal status of alpha(1)-antitrypsin in biology and medicine grew from the finding, thirty years ago, by Carl-Bertil Laurell, of the association of its deficiency with emphysema. In biology, alpha(1)-antitrypsin now provides the model for both the structure and the remarkable mechanism of the serpin protease inhibitors that control the key proteolytic pathways of the body. In medicine, the plasma deficiency of alpha(1)-antitrypsin has drawn attention to protease-antiprotease imbalance as a contributory cause of chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

The hormones that most directly control tissue activities in health and disease are delivered by two noninhibitory members of the serpin family of protease inhibitors, thyroxine-binding globulin (TBG) and corticosteroid-binding globulin. The structure of TBG bound to tetra-iodo thyroxine, solved here at 2.8 A, shows how the thyroxine is carried in a surface pocket on the molecule.

View Article and Find Full Text PDF

Numerous disorders, including Alzheimer's, Parkinson's and other late-onset neurodegenerative diseases, arise from the conformationally driven aggregation of individual proteins. Previous focus on just one end-product of such aggregation - extracellular deposits of amyloid - has diverted attention from what is now recognized as being primarily intracellular disease processes. Recent structural findings show how cytotoxicity can result from even minor changes in conformation that do not lead to amyloid formation, as with the accumulation within the endoplasmic reticulum of intact mutant alpha-1-antitrypsin in hepatocytes and of neuroserpin in neurons.

View Article and Find Full Text PDF

Conformational diseases are a newly recognized group of heterogeneous disorders resulting from the conformational instability of individual proteins. Such instability allows the formation of intermolecular linkages between b-sheets, to give protein aggregation and inclusion body formation. The serpin family of serine protease inhibitors provides the best-studied examples of the structural changes involved.

View Article and Find Full Text PDF

Many of the late-onset dementias, including Alzheimer's disease and the prion encephalopathies, arise from the aberrant aggregation of individual proteins. The serpin family of serine protease inhibitors provides a well-defined structural example of such pathological aggregation, as its mutant variants readily form long-chain polymers, resulting in diseases ranging from thrombosis to dementia. The intermolecular linkages result from the insertion of the reactive site loop of one serpin molecule into the middle strand (s4A) position of the A beta-sheet of another molecule.

View Article and Find Full Text PDF