High resolution rotational Terahertz (THz) spectroscopy has been widely applied to the studies of numerous polar gas phase molecules, in particular volatile organic compounds (VOCs). During the storage of foodstuffs packed under a protective atmosphere, microbial activity will lead to the generation of a complex mixture of trace gases that could be used as food spoilage indicators. Here we have demonstrated that the THz instrumentation presently available provides sufficient sensitivity and selectivity to monitor the generation of hydrogen sulfide (H2S) in the headspace of packed Atlantic salmon (Salmo salar) fillet portions.
View Article and Find Full Text PDFRoom temperature millimeter-wave rotational spectroscopy supported by high level of theory calculations have been employed to fully characterise the conformational landscape of 3-Methoxyphenol, a semi-volatile polar oxygenated aromatic compound precursor of secondary organic aerosols in the atmosphere arising from biomass combustion. While previous rotationally-resolved spectroscopic studies in the microwave and in the UV domains failed to observe the complete conformational landscape, the 70-330 GHz rotational spectrum measured in this study reveals the ground state rotational signatures of the four stable conformations theoretically predicted. Moreover, rotational transitions in the lowest energy vibrationally excited states were assigned for two conformers.
View Article and Find Full Text PDFThe monitoring of gas-phase mononitrotoluenes is crucial for defence, civil security and environmental interests because they are used as taggant for TNT detection and in the manufacturing of industrial compounds such as dyestuffs. In this study, we have succeeded to measure and analyse at high-resolution a room temperature rotationally resolved millimetre-wave spectrum of meta-nitrotoluene (3-NT). Experimental and theoretical difficulties have been overcome, in particular, those related to the low vapour pressure of 3-NT and to the presence of a CH internal rotation in an almost free rotation regime (V =6.
View Article and Find Full Text PDFThe case of symmetric tops CH(3)X (X = Br, Cl, F, …) perturbed by non-polar diatoms Y(2) (Y = N(2), O(2), …) is analysed from the viewpoint of theoretical collisional broadening of their rotational lines observed in atmospheric spectra. A semi-classical approach involving an exponential representation of the scattering operator and exact trajectories governed by the isotropic potential is presented. For the first time the active molecule is strictly treated as a symmetric top and the atom-atom interactions are included in the intermolecular potential model.
View Article and Find Full Text PDFA frequency doubled erbium doped modelocked fiber frequency comb is used to implement a THz photomixing synthesizer. The useful THz linewidth is in order of 150 kHz and has been assessed along with the frequency accuracy by spectroscopic measurements demonstrating a relative accuracy of 10(-8) at frequencies around 1 THz. The THz synthesizer is used to implement a THz spectrometer to study the rotational absorption spectrum of carbonyl sulfide (OCS).
View Article and Find Full Text PDFA review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke.
View Article and Find Full Text PDFContinuous-wave terahertz spectroscopy by photomixing is applied to the analysis of mainstream cigarette smoke. Using the wide tunability of the source, spectral signatures of hydrogen cyanide (HCN), carbon monoxide (CO), formaldehyde (H2CO), and water (H2O) have been observed from 500 to 2400 GHz. The fine spectral purity allows direct concentration measurement from the pure rotational transitions of HCN and CO.
View Article and Find Full Text PDF