Normal serum can increase the rate of lipolysis in isolated adipocytes. Recently, we reported that the lipolytic effect of serum could be partly explained by effects of iron and transferrin. To further investigate these effects on fat cell metabolism, we have investigated effects of serum, iron, and transferrin on glucose transport in isolated rat adipocytes.
View Article and Find Full Text PDFProlonged treatment of adipocytes with certain inhibitors of lipolysis, including N(6)-phenylisopropyl adenosine (PIA) and prostaglandin E(1) (PGE(1)) leads to down-regulation of G(i). Prolonged treatment with PIA increases the rate of lipolysis, and we have reported that tumor necrosis factor-alpha (TNF alpha) stimulates lipolysis by down-regulating G(i). To determine the relationship between G(i) concentration and lipolysis, we have investigated the effect of two other acute inhibitors of lipolysis; PGE(1), which down-regulates G(i), and nicotinic acid (NA), which does not down-regulate G(i).
View Article and Find Full Text PDFObjective: Abdominal subcutaneous adipose tissue (SAT) occurs in two depots separated by a fascial plane: deep SAT and superficial SAT. In a recent study it was demonstrated that the amount of deep SAT has a much stronger relationship to insulin resistance than does superficial SAT. Because insulin resistance may be related to fatty acid release from adipose tissue, we hypothesized that the two SAT depots may have a different lipolytic activity.
View Article and Find Full Text PDF