Hydroxyapatite (HA) nanoparticles are commonly used as building blocks in the design of bone-substituting biomaterials. Recently, these nanoparticles have been considered for the treatment of metastasis disease, since their pH-dependent dissolution behavior allows for precise tuning of release kinetics of loaded cargo. Herein we show that the capacity of drug-loaded nanoparticles stabilized with citrate ions reduce cancer cell survival in an embryonic zebrafish xenograft model.
View Article and Find Full Text PDFPlatinum-based chemotherapeutics exhibit excellent antitumor properties. However, these drugs cause severe side effects including toxicity, drug resistance, and lack of tumor selectivity. Tumor-targeted drug delivery has demonstrated great potential to overcome these drawbacks.
View Article and Find Full Text PDFChemotherapeutic treatment of patients with bone tumors or bone metastases often leads to severe side effects such as high drug toxicity, lack of tumor specificity and induced drug resistance. A novel strategy to treat early stages of bone metastases involves local co-delivery of multiple chemotherapeutic agents to synergistically improve the curative effect and overcome shortcomings of traditional chemotherapy. Herein we show that selenite-doped hydroxyapatite nanoparticles loaded with a hydroxyapatite-binding anti-tumor platinum complex (PtPP-HASe) selectively reduce proliferation of cancer cells without reducing proliferation of bone marrow stem cells.
View Article and Find Full Text PDFThere is a need for effective medication against bone metastases because todays drugs are not able to penetrate the bone and reach the affected areas. To analyze if current or future platinum-containing drugs are able to achieve this, a quantitative imaging method is urgently needed. In this study, the platinum distribution in thin sections of mice tibia was determined using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in a spatially resolved manner.
View Article and Find Full Text PDFOwing to their tunable blood circulation time and suitable plasma stability, polymer-based nanomaterials hold a great potential for designing and utilising multifunctional nanocarriers for efficient imaging and effective treatment of cancer. When tagged with appropriate radionuclides, they may allow for specific detection (diagnosis) as well as the destruction of tumours (therapy) or even customization of materials, aiming to both diagnosis and therapy (theranostic approach). This review provides an overview of recent developments of radiolabelled polymeric nanomaterials (natural and synthetic polymers) for molecular imaging of cancer, specifically, applying nuclear techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT).
View Article and Find Full Text PDFBone metastases result from the invasion of primary tumors to bone. Current treatment modalities include local treatments such as surgery and radiotherapy, while systemic treatments include chemotherapy and (palliative) treatment of skeletal metastases. Nevertheless, once bone metastases have been established they remain incurable leading to morbidity and mortality.
View Article and Find Full Text PDF