Eur Phys J E Soft Matter
March 2023
The olfactory search POMDP (partially observable Markov decision process) is a sequential decision-making problem designed to mimic the task faced by insects searching for a source of odor in turbulence, and its solutions have applications to sniffer robots. As exact solutions are out of reach, the challenge consists in finding the best possible approximate solutions while keeping the computational cost reasonable. We provide a quantitative benchmarking of a solver based on deep reinforcement learning against traditional POMDP approximate solvers.
View Article and Find Full Text PDF