Publications by authors named "Robertus Hendriks"

Dedicated and specific sample preparation and adequate chromatographic resolution prior to MS are necessary for comprehensive and site-specific glycosylation analysis to compensate for high heterogeneity of protein glycosylation, low-abundance of specific glycoforms and ion-suppression effects caused by coelution of other peptides. This article describes a scheme for glycopeptide profiling, which comprises HILIC batch enrichment followed by complementary HILIC and RP-LC in 1-D and 2-D approaches. For reproducible and sensitive nano-LC/ESI-MS analysis, we used ZIC-HILIC and RP18e monolithic silica capillaries and assessed their retention characteristics and complementarity for glycopeptide separations.

View Article and Find Full Text PDF

A common technique for analysis of protein glycosylation is HPLC coupled to mass spectrometry (LC-MS). However, analysis is challenging due to a low abundance of glycopeptides in complex protein digests, microheterogeneity at the glycosylation site, ion suppression effects, and competition for ionization by coeluting peptides. Specific sample preparation is necessary for a comprehensive and site-specific glycosylation analysis by MS.

View Article and Find Full Text PDF

A simple and flexible system, employing a column switching technique, has been designed to allow the analysis of peptides and proteins smaller than 15 kDa by molecular weight in filtered urine samples by performing a direct on-column injection utilising simultaneous sample clean-up and trace enrichment. The positively charged peptides and small proteins in the sample are attracted to the inner, negatively charged pore structure of the RAM-SCX column while the larger proteins and uncharged or negatively charged compounds are excluded. After preconditioning with the biological sample, large amounts of sample can be injected.

View Article and Find Full Text PDF

Standardized sample preparation to reduce proteome complexity facilitates subsequent proteome analysis. Here we describe a robust sequential extraction method that enables simple fractionation of proteins in their native state according to their subcellular localization, yielding four subproteomes enriched in (a) cytosolic; (b) membrane and membrane organelle-localized; (c) soluble and DNA-associated nuclear and (d) cytoskeletal proteins. Efficiency and selectivity is demonstrated by morphological-, two-dimensional electrophoresis image-, immunological- as well as enzymatic-analysis.

View Article and Find Full Text PDF