Background: Although plastic pollution is increasing worldwide, very little is known about the microbial processes that take place once plastic debris is incorporated into the soil matrix. In this study, we conducted the first metatranscriptome analysis of polyethylene (PE)-associated biofilm communities in highly polluted landfill soil and compared their gene expression to that of a forest soil community within a 53-day period.
Results: Our findings indicate that the microbial population present in soil contaminated with plastic debris is predisposed to both inhabit and degrade plastic surfaces.
Organic phosphates (OP) are important nutrient components for living cells in natural environments, where they readily interact with ubiquitous iron phases such as hydrous ferric oxide, ferrihydrite (FHY). FHY partakes in many key bio(geo)chemical reactions including iron-mediated carbon storage in soils, or iron-storage in living organisms. However, it is still unknown how OP affects the formation, structure and properties of FHY.
View Article and Find Full Text PDFPit lakes in the 'anthropogenic lake district' in the Muskau Arch (western Poland; central Europe) are strongly affected by acid mine drainage (AMD). The studied acidic pit lake, ŁK-61 (pH <3), is also exposed to floods due to its location in the flood hazard area, which may significantly influence the geochemical behavior of elements. The elemental compositions of water and lake sediment samples were measured with ICP-OES and ICP-MS.
View Article and Find Full Text PDFLiquid-Phase Transmission Electron Microscopy (LP-TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP-TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed.
View Article and Find Full Text PDFThe fundamental processes of nucleation and crystallization are widely observed in systems relevant to material synthesis and biomineralization; yet most often, their mechanism remains unclear. In this study, we unravel the discrete stages of nucleation and crystallization of Fe(PO)·8HO (vivianite). We experimentally monitored the formation and transformation from ions to solid products by employing correlated, time-resolved and approaches.
View Article and Find Full Text PDFAdvanced techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions.
View Article and Find Full Text PDFSaponite is a clay mineral of the smectite group that finds applications in the chemical industry as a catalyst or catalyst precursor as well as in nanocomposites used for structural or catalytic applications. Saponite of controlled composition, crystallinity, particle size, and morphology would be highly beneficial to industry; however, such materials are not found in a sufficiently pure form in nature. Synthetic methods to produce saponite with specific properties are currently lacking as the understanding of the mechanisms controlling its formation, crystalline properties and particle morphology, is limited.
View Article and Find Full Text PDFMeteorites contain a record of their thermal and magnetic history, written in the intergrowths of iron-rich and nickel-rich phases that formed during slow cooling. Of intense interest from a magnetic perspective is the "cloudy zone," a nanoscale intergrowth containing tetrataenite-a naturally occurring hard ferromagnetic mineral that has potential applications as a sustainable alternative to rare-earth permanent magnets. Here we use a combination of high-resolution electron diffraction, electron tomography, atom probe tomography (APT), and micromagnetic simulations to reveal the 3D architecture of the cloudy zone with subnanometer spatial resolution and model the mechanism of remanence acquisition during slow cooling on the meteorite parent body.
View Article and Find Full Text PDFMetallic phases in the Tazewell IIICD iron and Esquel pallasite meteorites were examined using Fe synchrotron Mössbauer spectroscopy. Spatial resolution of ~10-20 μm was achieved, together with high throughput, enabling individual spectra to be recorded in less than 1 h. Spectra were recorded every 5-10 μm, allowing phase fractions and hyperfine parameters to be traced along transects of key microstructural features.
View Article and Find Full Text PDF