The synthesis, physico-chemical characterization and cytotoxicity of four copper(II) coordination complexes, i.e. [Cu(HBPA)Cl] (1), [Cu(BHA)] (2), [Cu(HBPA)(BHA)Cl] CHOH (3) and [Cu(HBPA)]Cl·4HO (4), are reported.
View Article and Find Full Text PDFThe synthesis, X-ray molecular structure, physico-chemical characterization and dual antioxidant activity (catalase and superoxide dismutase) of a new polymeric mixed valence Mn(III)Mn(II) complex, containing the ligand HBPClNOL (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)] propylamine) is described. The monomeric unit is composed of a dinuclear Mn(II)Mn(III) moiety, [Mn(III)(μ-HBPClNOL)(μ-BPClNOL)Mn(II)(Cl)](ClO)·2HO, , in which the Mn ions are connected by two different bridging groups provided by two molecules of the ligand HBPClNOL, a phenoxide and an alkoxide group. In the solid state, this mixed valence dinuclear unit is connected to its neighbors through chloro bridges.
View Article and Find Full Text PDFThe synthesis, physico-chemical characterization and cytotoxicity of four new ligands and their respective copper(II) complexes toward two human leukemia cell lines (THP-1 and U937) are reported (i.e. [(HL1)Cu(μ-Cl)2Cu(HL1)]Cl2·H2O (1), [(H2L2)Cu(μ-Cl)2Cu(H2L2)]Cl2·5H2O (2), [(HL3)Cu(μ-Cl)2Cu(HL3)]Cl2·4H2O (3), [(H2L4)Cu(μ-Cl)2Cu(H2L4)]Cl2·6H2O (4)).
View Article and Find Full Text PDFFree Radic Biol Med
March 2015
Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes.
View Article and Find Full Text PDFIn this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains.
View Article and Find Full Text PDF