With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species.
View Article and Find Full Text PDFAtmospheric nitrogen (N) deposition has notably increased since the industrial revolution, doubling N inputs to terrestrial ecosystems. This could mitigate N limitations in forests, potentially enhancing productivity and carbon sequestration. However, excessive N can lead to forest N saturation, causing issues like soil acidification, nutrient imbalances, biodiversity loss, increased tree mortality and a potential net greenhouse gas emission.
View Article and Find Full Text PDFIn recent years, Climate-Smart Forestry (CSF) has emerged as an innovative approach to sustainable forest management, aiming to enhance forest resilience and to balance the provision of ecosystem services facing climate-related threats. This study introduces for the first time a new composite climate-smart index (I) to assess CSF. The methodological approach comprises the following steps: (i) the selection and evaluation of CSF indicators; (ii) the weighting of these indicators; and (iii) the assessment of CSF for Mediterranean forests in two distinct periods, specifically 2005 and 2015.
View Article and Find Full Text PDFAs major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues.
View Article and Find Full Text PDFTree mortality and forest dieback episodes are increasing due to drought and heat stress. Nevertheless, a comprehensive understanding of mechanisms enabling trees to withstand and survive droughts remains lacking. Our study investigated basal area increment (BAI), and δC-derived intrinsic water-use-efficiency (WUE), to elucidate beech resilience across four healthy stands in Italy with varying climates and soil water availability.
View Article and Find Full Text PDFWood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e.
View Article and Find Full Text PDFProcess-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmental factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches.
View Article and Find Full Text PDFThe main objectives of this research were to (i) investigate the concentration; (ii) characterize the distribution; (iii) determine the sources apportionment; (iv) estimate environmental and health risks of heavy metals in soil from mountain beech forest. A total of 76 soil samples from 20 pure beech forest stands from Bosnia and Herzegovina (BA), Bulgaria (BG), Check Republic (CZ), Germany (DE), Italy (IT), Poland (PL), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SL), and Spain (ES) were collected. The content of major elements was measured by X-ray fluorescence spectroscopy (XRF).
View Article and Find Full Text PDFEuropean beech ( L.) is a widespread and economically important temperate tree species in Europe. The warmer temperatures and severe drought events expected in the future, especially in Mediterranean areas, could affect the vitality and productivity of beech stands that have been intensively used in these areas in the past.
View Article and Find Full Text PDFIntroduction: Silver fir (Abies alba Mill.) is one of the most valuable conifer wood species in Europe. Among the main opportunistic pathogens that cause root and butt rot on silver fir are Armillaria ostoyae and Heterobasidion abietinum.
View Article and Find Full Text PDFMesophyll conductance (gm) determines the diffusion of CO2 from the substomatal cavities to the site of carboxylation in the chloroplasts and represents a critical component of the diffusive limitation of photosynthesis. In this study, we evaluated the average effect sizes of different environmental constraints on gm in Populus spp., a forest tree model.
View Article and Find Full Text PDFWood formation consumes around 15% of the anthropogenic CO emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability.
View Article and Find Full Text PDFArundo donax L. is an invasive grass species with high tolerance to a wide range of environmental stresses. The response of potted A.
View Article and Find Full Text PDFConductance of CO across the mesophyll () frequently constrains photosynthesis () but cannot be measured directly. We examined of cherry ( L) subjected to severe drought using the variable method and carbon-isotopic composition (C) of sugars from the centre of the leaf, the leaf petiole sap, and sap from the largest branch. Depending upon the location of the plant from which sugars are sampled, may be estimated over scales ranging from a portion of the leaf to a canopy of leaves.
View Article and Find Full Text PDFThe potential of Arundo donax to grow in degraded soils, characterized by excess of salinity (Na+), and phosphorus deficiency (-P) or excess (+P) also coupled with salinity (+NaP), was investigated by combining in vivo plant phenotyping, quantification of metabolites and ultrastructural imaging of leaves with a transcriptome-wide screening. Photosynthesis and growth were impaired by + Na, -P and + NaP. While + Na caused stomatal closure, enhanced biosynthesis of carotenoids, sucrose and isoprene and impaired anatomy of cell walls, +P negatively affected starch production and isoprene emission, and damaged chloroplasts.
View Article and Find Full Text PDFElevation is a complex environmental factor altering temperature, light, moisture and soil nutrient availability, and thus may affect plant growth and physiology. Such effects of elevation may also depend on seasons. Along an elevational gradient of the Balang Mountain, southwestern China, we sampled soil and 2-year old leaves, 2-year old shoots, stem sapwood and fine roots (diameter<5mm) of Quercus aquifolioides at 2843, 2978, 3159, 3327, 3441 and 3589m a.
View Article and Find Full Text PDFThe sediments dredged from a waterway and decontaminated through a phytoremediation process have been used as substrates alternatively to the traditional forest nursery substrate for pot productions of holm oak (Quercus ilex L.) planting stocks. The substrates, made by mixing decontaminated sediments to agricultural soil at different degrees, were tested in order to evaluate their suitability as growth substrates.
View Article and Find Full Text PDFThe present study investigated accumulation, translocation and tolerance of autotrophic Populus alba clone "Villafranca" in response to excess concentrations of cadmium (Cd) and copper (Cu) provided to the plants. For this purpose, increasing concentrations of Cd (0, 5, 50 and 250 μM) and Cu (0, 5, 50, 250 and 500 μM) were administered to the growth medium in which micropropagated poplar plantlets were exposed to metal treatments for 15 days. Filter bags, instead of the conventional in vitro screening, were applied to improve the experimental design.
View Article and Find Full Text PDFIsoprene is synthesized through the 2-C-methylerythritol-5-phosphate (MEP) pathway that also produces abscisic acid (ABA). Increases in foliar free ABA concentration during drought induce stomatal closure and may also alter ethylene biosynthesis. We hypothesized a role of isoprene biosynthesis in protecting plants challenged by increasing water deficit, by influencing ABA production and ethylene evolution.
View Article and Find Full Text PDFOn Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure.
View Article and Find Full Text PDFTree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca.
View Article and Find Full Text PDF