An optical waveplate rotating light polarization can be modeled as a single-qubit unitary operator. This analogy can be exploited to experimentally retrieve a polarization transformation within the paradigm of quantum process tomography. Standard approaches to tomographic problems rely on the maximum-likelihood estimation, providing the most likely transformation to yield the same outcomes as a set of experimental projective measurements.
View Article and Find Full Text PDFQuantum computing is rapidly establishing itself as a new computing paradigm capable of obtaining advantages over its classical counterpart. However, a major limitation in the design of a quantum algorithm is related to the proper mapping of the corresponding circuit to a specific quantum processor so that the underlying physical constraints are satisfied. Moreover, current deterministic mapping algorithms suffer from high run times as the number of qubits to map increases.
View Article and Find Full Text PDF