Background: Predicting the risk of developing pancreatic ductal adenocarcinoma (PDAC) is of paramount importance, given its high mortality rate. Current PDAC risk prediction models rely on a limited number of variables, do not include genetics, and have a modest accuracy.
Aim: This study aimed to develop an interpretable PDAC risk prediction model, based on machine learning (ML).
This paper focuses on the use of local Explainable Artificial Intelligence (XAI) methods, particularly the Local Rule-Based Explanations (LORE) technique, within healthcare and medical settings. It emphasizes the critical role of interpretability and transparency in AI systems for diagnosing diseases, predicting patient outcomes, and creating personalized treatment plans. While acknowledging the complexities and inherent trade-offs between interpretability and model performance, our work underscores the significance of local XAI methods in enhancing decision-making processes in healthcare.
View Article and Find Full Text PDF