We conducted a detailed experimental investigation of the Ag(977) vicinal surface, a high Miller index surface derived from the (111) surface. The sample surface was prepared using standard methodology and its quality was examined by XPS, LEED, and STM. I(V)-LEED analysis was used to determine the surface structure focusing the intricate relaxation dynamics expected for this surface.
View Article and Find Full Text PDFSuperparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention in biomedical research due to their potential applications. However, little is known about their impact and toxicity on testicular cells. To address this issue, we conducted an in vitro study using primary mouse testicular cells, testis fragments, and sperm to investigate the cytotoxic effects of sodium citrate-coated SPIONs (Cit_SPIONs).
View Article and Find Full Text PDFIn this work, flower-like molybdenum disulfide (MoS) microspheres were produced with polyethylene glycol (PEG) to form MoS-PEG. Likewise, gold nanoparticles (AuNPs) were added to form MoS-PEG/Au to investigate its potential application as a theranostic nanomaterial. These nanomaterials were fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), photoelectron X-ray spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), cyclic voltammetry and impedance spectroscopy.
View Article and Find Full Text PDFFlow cytometry is a universally applied technique in many biological and clinical assays to evaluate cells, bacteria, parasites, and particles at a micrometre scale. More advanced flow cytometers can detect small molecules down to the nanometre scale that may identify intracellular nanostructures. Advancements in the field of nanobiotechnology have led to techniques that allow the study of cellular behaviour after exposure to nanomaterials, particularly, metal nanoparticles.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2020
Nanotechnology is one of the most promising tools for future diagnosis and therapy. Thus, we have produced gold nanoparticles coated with cetuximab at a dose-range from 5 μg up to 200 μg, and prolonged stable nanocomplexes were obtained. The nanocomplexes were characterized by UV-Vis, zeta potential, TEM, fluorometry, infrared regions, XPS and atomic absorption spectrometry.
View Article and Find Full Text PDFIn the present work, we study the role of different components in the formation of more stable iron oxide magnetic nanoparticles (MNPs): β-cyclodextrin (BCD), 2-hydroxypropyl-β-cyclodextrin (HP) and citrate anion. MNPs formulations were characterized by FTIR, particles size measurements, zeta potential based on dynamic light scattering principle technique, X-ray powder pattern diffraction, XPS spectroscopy, transmission electron microscopy and thermogravimetric analysis. The results showed that cyclodextrins and citrate plays a key role in order to obtain a lower size of coated MNPs and proved to be an efficient strategy to obtain a more stable colloidal dispersion, avoiding the nanoparticles oxidation, enhancing the irinotecan incorporation and release.
View Article and Find Full Text PDFNew TiO2/WO3 films were produced by the layer-by-layer (LbL) technique and successfully applied as self-cleaning photocatalytic surfaces. The films were deposited on fluorine doped tin oxide (FTO) glass substrates from the respective metal oxide nanoparticles obtained by the sol-gel method. Thirty alternative immersions in pH = 2 TiO2 and pH = 10 WO3 sols resulted in ca.
View Article and Find Full Text PDF