Publications by authors named "Roberto Paciotti"

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

In the present study, we focus on dinuclear cobalt-based CO-RMs with the aim of elucidating their CO release mechanism, as well as to understand how structural changes targeted to modify the electronic properties of these compounds can modulate CO delivery. To this end, we specifically synthesized a set of phenyl-propargyl-based CO-RMs bearing -NO, -H, and -OCH as para-substituents (R) with varying mesomeric influence (M) and different heteroatoms (X = NH, O, or S) linking the propargyl tail and the aromatic ring. The effects of R and X in modulating CO release were assessed by using several experimental and computational techniques to obtain a coherent picture and to shed light on the stability and release properties of Co-based CO-RMs.

View Article and Find Full Text PDF

Polarization and charge-transfer interactions play an important role in ligand-receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA II)-an important druggable target containing a Zn ion in the active site-as a case study to predict the binding free energy in metalloprotein-ligand complexes and designed specialized computational methods that combine the ab initio fragment molecular orbital (FMO) method and GRID approach. To reproduce the experimental binding free energy in these systems, we adopted a machine-learning approach, here named formula generator (FG), considering different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP.

View Article and Find Full Text PDF

Immunotherapy has marked a revolution in cancer therapy. The most extensively studied target in this field is represented by the protein-protein interaction between PD-1 and its ligand, PD-L1. The promising results obtained with the clinical use of monoclonal antibodies (mAbs) directed against both PD-1 and PD-L1 have prompted the search for small-molecule binders capable of disrupting the protein-protein contact and overcoming the limitations presented by mAbs.

View Article and Find Full Text PDF

Context: Rh(III) complexes demonstrated to exert promising pharmacological effects with potential applications as anti-cancer, anti-bacterial, and antimicrobial agents. One important Rh(III)-ligand is the pentamethylcyclopentadienyl (Cp*) group forming in water the [Cp*Rh(HO)] complex. Among of its attractive chemical properties is the ability to react specifically with Tyr amino acid side chain of G-protein-coupled receptor (GPCR) peptides by means of highly chemoselective bioconjugation reaction, at room temperature and at pH 5-6.

View Article and Find Full Text PDF

The inorganic antineoplastic drug cisplatin was made to react in solution with the dipeptide cysteinylglycine (CysGly), chosen as a functional model of glutathione, and the reaction products were analyzed using electrospray ionization mass spectrometry (ESI-MS). Selected complexes, i.e.

View Article and Find Full Text PDF

In this work, the ab initio fragment molecular orbital (FMO) method was applied to calculate and analyze the binding energy of two biscarbene-Au(I) derivatives, [Au(9-methylcaffein-8-ylidene)] and [Au(1,3-dimethylbenzimidazol-2-ylidene)], to the DNA G-Quadruplex structure. The FMO2 binding energy considers the ligand-receptor complex as well as the isolated forms of energy-minimum state of ligand and receptor, providing a better description of ligand-receptor affinity compared with simple pair interaction energies (PIE). Our results highlight important features of the binding process of biscarbene-Au(I) derivatives to DNA G-Quadruplex, indicating that the total deformation-polarization energy and desolvation penalty of the ligands are the main terms destabilizing the binding.

View Article and Find Full Text PDF

The reactivity of a widely used metal based antineoplastic drug, cisplatin, cis-PtCl(NH), with L-cysteine (Cys) has been investigated using a combination of electrospray ionization mass spectrometry (ESI-MS), IRMPD gas phase ion spectroscopy and DFT calculations. The cysteine lateral chain represents one of the main platination sites in proteins, which is believed to be related to the resistance mechanisms to cisplatin. The vibrational features of the mass-selected substitution product cis-[PtCl(NH)(Cys)] and the intercepted cis-[PtCl(NH)(HO)(Cys)] intermediate complex were compared to calculated IR spectra, enabling the assessment of the sampled ions structures.

View Article and Find Full Text PDF

The molecular interaction properties and aggregation capabilities disclosed by PrP-E200K, a pathogenic mutant of the human prion protein, were investigated in detail using multilayered computational approaches. In a previous work, we reported that the electrostatic complementarity between region1 (negative) and region3 (positive) has been assumed to lead to a head-to tail interaction between 120 and 231 PrP-E200K units and to initiation of the aggregation process. In this work, we extended the PrP-E200K structure by including the unstructured 90-120 segment which was found to assume different conformations.

View Article and Find Full Text PDF

Genistein is a naturally occurring polyphenol belonging to the family of flavonoids with estrogenic properties and proven antioxidant, anti-inflammatory, and hormonal effects. Genistein and its derivatives are involved in radical scavenging activity by way of mechanisms based on sequential proton-loss electron transfer. In view of this role, a detailed structural characterization of its bare deprotonated form, [geni-H], generated by electrospray ionization, has been performed by tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy in the 800-1800 cm spectral range.

View Article and Find Full Text PDF

Methionine (Met) plays an important role in the metabolism of cisplatin anticancer drug. Yet, methionine platination in aqueous solution presents a highly complex pattern of interconnected paths and intermediates. This study reports on the reaction of methionine with the active aqua form of cisplatin, -[PtCl(NH)(HO)], isolating the encounter complex of the reactant pair, {-[PtCl(NH)(HO)]·Met}, by electrospray ionization.

View Article and Find Full Text PDF

A multilayered computational workflow was designed to identify a druggable binding site on the surface of the E200K pathogenic mutant of the human prion protein, and to investigate the effect of the binding of small molecules in the inhibition of the early aggregation of this protein. At this purpose, we developed an efficient computational tool to scan the molecular interaction properties of a whole MD trajectory, thus leading to the characterization of plausible binding regions on the surface of PrP-E200K. These structural data were then employed to drive structure-based virtual screening and fragment-based approaches to the seeking of small molecular binders of the PrP-E200K.

View Article and Find Full Text PDF

Low concentrations of carbon monoxide (CO) were reported to exhibit anti-inflammatory effects when administered in cells by suitable chemotypes such as CO releasing molecules (CO-RMs). In addition, the pH-modulating abilities of specific carbonic anhydrase isoforms played a crucial role in different models of inflammation and neuropathic pain. Herein, we report a series of chemical hybrids consisting of a Carbonic Anhydrase (CA) inhibitor linked to a CO-RM tail (CAI/CO-RMs).

View Article and Find Full Text PDF

Quite surprisingly, cisplatin and cis-[PtI(NH)] were found to manifest significant differences in their reactions with the model protein lysozyme. We decided to explore whether these differences recur when reacting these two Pt compounds with other proteins. Notably, ESI-MS measurements carried out on cytochrome c nicely confirmed the reaction pattern observed for lysozyme.

View Article and Find Full Text PDF

The programmed cell death protein 1 (PD-1) and its ligand, PD-L1, constitute an important co-inhibitory immune checkpoint leading to downregulation of immune system. Tumor cells developed a strategy to trigger PD-1/PD-L1 pathway reducing the T cell anticancer activity. Anti-PD-L1 small drugs, generally with improved pharmacokinetic and technological profiles than monoclonal antibodies, became an attractive research topic.

View Article and Find Full Text PDF

Unveiling the events leading to the formation of prion particles is a nowadays challenge in the field of neurochemistry. Pathogenic mutants of prion protein (PrP) are characterized by both an intrinsic tendency to aggregation and scrapie conversion propensity. However, the question about a possible correlation between these two events lasts still unanswered.

View Article and Find Full Text PDF

Cisplatin and transplatin (cis- and trans-[PtCl(NH)]) have been allowed to react with methionine (Met) in water solution in a study aimed to characterize the monofunctional complex primarily formed. The thioether function of methionine is known to have a very high affinity for square planar platinum(ii) and sulfur-containing biomolecules have been proposed as a cisplatin drug reservoir on the way to platination at DNA. Both cisplatin and transplatin yield [PtCl(NH)Met] complexes, delivered by electrospray ionization in the gas phase and sampled as isolated species using tools based on mass spectrometry.

View Article and Find Full Text PDF

N-[(3-Aminomethyl)benzyl]acetamidine derivatives were synthesized and in vitro evaluated as inhibitors of the inducible isoform of nitric oxide synthase (iNOS). Because of the high potency of action and the excellent selectivity over the endothelial nitric oxide synthase (eNOS), compound 10 was ex vivo evaluated on isolated and perfused resistance arteries. The results confirm that compound 10 selectively inhibits the iNOS, without affecting the endothelial isoform.

View Article and Find Full Text PDF

The sulfation of amino acids is a frequent post-translational modification. It is highly labile, though, and characterizing it by mass spectrometry, an otherwise powerful and widely exploited tool in analytical proteomics, is a challenge. The presently reported study is aimed at revealing the O-sulfation of l-serine and elucidating the effects of protonation and deprotonation on the structure and stability of the ensuing ionic species, [sSer + H](+) and [sSer - H](-).

View Article and Find Full Text PDF

The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis.

View Article and Find Full Text PDF