Publications by authors named "Roberto Pacifici"

Article Synopsis
  • Gender-affirming hormone therapy (GAHT) helps transgender boys by improving their bone structure, but does not seem to help transgender girls at all.
  • In male mice, GAHT affects the gut bacteria, which then helps with bone formation by increasing certain immune cells called Tregs.
  • Blocking the growth of these Tregs in male mice stops GAHT from helping their bones, showing how important Tregs are in this process.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the relationship between the gut microbiome and bone health in humans, utilizing high-resolution imaging from two large cohorts: the Framingham Heart Study (FHS) and the Osteoporosis in Men Study (MrOS).
  • - Researchers analyzed stool samples to identify various microbial taxa and their abundance, linking these to bone measurement outcomes such as volumetric bone mineral density (vBMD) using advanced statistical modeling.
  • - Results suggested specific gut bacteria are associated with bone density, where certain genera predicted lower bone density measures, while others correlated with higher density, indicating a potential microbiome influence on skeletal health.
View Article and Find Full Text PDF

Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases.

View Article and Find Full Text PDF

Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches.

View Article and Find Full Text PDF

Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases.

View Article and Find Full Text PDF

The intake of dietary phosphate far exceeds recommended levels; however, the long-term health consequences remain relatively unknown. Here, the chronic physiological response to sustained elevated and reduced dietary phosphate consumption was investigated in mice. Although serum phosphate levels were brought into homeostatic balance, the prolonged intake of a high-phosphate diet dramatically and negatively impacted bone volume; generated a sustained increase in the phosphate responsive circulating factors FGF23, PTH, osteopontin and osteocalcin; and produced a chronic low-grade inflammatory state in the BM, marked by increased numbers of T cells expressing IL-17a, RANKL, and TNF-α.

View Article and Find Full Text PDF

IL-17A (IL-17), a driver of the inflammatory phase of fracture repair, is produced locally by several cell lineages including γδ T cells and Th17 cells. However, the origin of these T cells and their relevance for fracture repair are unknown. Here, we show that fractures rapidly expanded callus γδ T cells, which led to increased gut permeability by promoting systemic inflammation.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B receptor (TrkB) are expressed in human osteoblasts and mediate fracture healing. BDNF/TrkB signaling activates Akt that phosphorylates and inhibits asparagine endopeptidase (AEP), which regulates the differentiation fate of human bone marrow stromal cells (hBMSC) and is altered in postmenopausal osteoporosis. Here we show that R13, a small molecular TrkB receptor agonist prodrug, inhibits AEP and promotes bone formation.

View Article and Find Full Text PDF

Cyclic adenosine monophosphate (cAMP)-dependent phosphodiesterase (PDE) inhibitors such as pentoxifylline (PTX) suppress cAMP degradation and promote cAMP-dependent signal transduction. PDE inhibitors increase bone formation and bone mass in preclinical models and are used clinically to treat psoriatic arthritis by targeting inflammatory mediators including activated T cells. T cell activation requires two signals: antigen-dependent CD3-activation, which stimulates cAMP production; and CD28 co-stimulation, which downregulates cAMP-signaling, through PDE activation.

View Article and Find Full Text PDF

Bone metastases are frequent complications of malignant melanoma leading to reduced quality of life and significant morbidity. Regulation of immune cells by the gut microbiome influences cancer progression, but the role of the microbiome in tumor growth in bone is unknown. Using intracardiac or intratibial injections of B16-F10 melanoma cells into mice, we showed that gut microbiome depletion by broad-spectrum antibiotics accelerated intraosseous tumor growth and osteolysis.

View Article and Find Full Text PDF

Estrogen deficiency causes a gut microbiome-dependent expansion of BM Th17 cells and TNF-α-producing T cells. The resulting increased BM levels of IL-17a (IL-17) and TNF stimulate RANKL expression and activity, causing bone loss. However, the origin of BM Th17 cells and TNF+ T cells is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that genes play a big role in how strong our bones are, but other things we don't understand well also matter.
  • They studied mice to see how the bacteria in their guts affect their bones and discovered that certain gut bacteria can harm bone growth.
  • The research shows that if we learn how to handle these gut bacteria better, it could help humans have stronger bones, but some bacteria might also cause bone loss if not used carefully.
View Article and Find Full Text PDF

Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the human microbiome. The gut microbiome is the richest microbiome and is now known to regulate postnatal skeletal development and the activity of the major endocrine regulators of bone. Parathyroid hormone (PTH) is one of the bone-regulating hormone that requires elements of the gut microbiome to exert both its bone catabolic and its bone anabolic effects.

View Article and Find Full Text PDF

Bone is a dynamic tissue that is in a constant state of remodeling. Bone turnover markers (BTMs), procollagen type I N-terminal propeptide (P1NP) and C-terminal telopeptides of type I collagen (CTX), provide sensitive measures of bone formation and resorption, respectively. This study used ultra-high-resolution metabolomics (HRM) to determine plasma metabolic pathways and targeted metabolites related to the markers of bone resorption and formation in adults.

View Article and Find Full Text PDF

Background & Aims: There is a considerable degree of variation in bone mineral density (BMD) within populations. Use of plasma metabolomics may provide insight into established and novel determinants of BMD variance, such as nutrition and gut microbiome composition, to inform future prevention and treatment strategies for loss of BMD. Using high-resolution metabolomics (HRM), we examined low-molecular weight plasma metabolites and nutrition-related metabolic pathways associated with BMD.

View Article and Find Full Text PDF

Bone loss is a frequent but not universal complication of hyperparathyroidism. Using antibiotic-treated or germ-free mice, we show that parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched by the Th17 cell-inducing taxa segmented filamentous bacteria (SFB). SFB microbiota enabled PTH to expand intestinal TNF T and Th17 cells and increase their S1P-receptor-1 mediated egress from the intestine and recruitment to the bone marrow (BM) that causes bone loss.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) is a critical regulator of skeletal development that promotes both bone formation and bone resorption. Using microbiota depletion by wide-spectrum antibiotics and germ-free (GF) female mice, we showed that the microbiota was required for PTH to stimulate bone formation and increase bone mass. Microbiota depletion lowered butyrate levels, a metabolite responsible for gut-bone communication, while reestablishment of physiologic levels of butyrate restored PTH-induced anabolism.

View Article and Find Full Text PDF

The gut microbiome is a key regulator of bone health that affects postnatal skeletal development and skeletal involution. Alterations in microbiota composition and host responses to the microbiota contribute to pathological bone loss, while changes in microbiota composition that prevent, or reverse, bone loss may be achieved by nutritional supplements with prebiotics and probiotics. One mechanism whereby microbes influence organs of the body is through the production of metabolites that diffuse from the gut into the systemic circulation.

View Article and Find Full Text PDF

Nutritional supplementation with probiotics can prevent pathologic bone loss. Here we examined the impact of supplementation with Lactobacillus rhamnosus GG (LGG) on bone homeostasis in eugonadic young mice. Micro-computed tomography revealed that LGG increased trabecular bone volume in mice, which was due to increased bone formation.

View Article and Find Full Text PDF

Primary hyperparathyroidism (PHPT) is a condition where elevated PTH levels lead to bone loss, in part through increased production of the osteoclastogenic factor IL-17A, by bone marrow (BM) T-helper 17 (Th17) cells, a subset of helper CD4+ T cells. In animals, PHPT is modeled by continuous PTH treatment (cPTH). In mice, an additional critical action of cPTH is the capacity to increase the production of RANKL by osteocytes.

View Article and Find Full Text PDF

The Santa Fe Bone Symposium is an annual meeting devoted to clinical applications of recent advances in skeletal research. The 19th Santa Fe Bone Symposium convened August 3-4, 2018, in Santa Fe, New Mexico, USA. Attendees included physicians of many specialties, fellows in training, advanced practice providers, clinical researchers, and bone density technologists.

View Article and Find Full Text PDF

Activated lymphocytes promote inflammation and bone destruction in rheumatoid arthritis (RA), making T cells and B cells therapeutic targets. Indeed, pharmacological blockade of CD28 costimulation using CTLA-4Ig (abatacept), approved for amelioration of RA, renders T cells dormant (anergic). CTLA-4Ig also promotes bone accretion in healthy mice; surprisingly, however, this effect is driven exclusively through upregulation of bone formation, rather than anti-inflammatory effects on resorption.

View Article and Find Full Text PDF

Teriparatide is a bone anabolic treatment for osteoporosis, modeled in animals by intermittent PTH (iPTH) administration, but the cellular and molecular mechanisms of action of iPTH are largely unknown. Here, we show that Teriparatide and iPTH cause a ~two-threefold increase in the number of regulatory T cells (Tregs) in humans and mice. Attesting relevance, blockade of the Treg increase in mice prevents the increase in bone formation and trabecular bone volume and structure induced by iPTH Therefore, increasing the number of Tregs is a pivotal mechanism by which iPTH exerts its bone anabolic activity.

View Article and Find Full Text PDF

Osteomicrobiology refers to the role of microbiota in bone health and the mechanisms by which the microbiota regulates post-natal skeletal development, bone aging, and pathologic bone loss. Here, we review recent reports linking gut microbiota to changes in bone phenotype. A pro-inflammatory cytokine milieu drives bone resorption in conditions such as sex steroid hormone deficiency.

View Article and Find Full Text PDF
Bone Remodeling and the Microbiome.

Cold Spring Harb Perspect Med

April 2018

Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the microbiome. The gastrointestinal tract harbors the greatest numbers of these microorganisms, which regulate human nutrition, metabolism, and immune system function. Moreover, the intestinal microbiota contains pro- and anti-inflammatory products that modulate immune responses and may play a role in maintaining gut barrier function.

View Article and Find Full Text PDF