Brief Funct Genomics
March 2021
New developments in single-cell genomics have transformed developmental biology in recent years by enabling systematic analysis of embryonic cell types and differentiation trajectories. Ongoing efforts in experimental and computational method development aim to reveal gene-regulatory mechanisms and to provide additional spatio-temporal information about developmental cell fate decisions. Here, we discuss recent technological developments as well as biological applications of single-cell genomics, with a particular focus on analysis of developmental cell fate decisions.
View Article and Find Full Text PDFEmbryonic development seemingly proceeds with almost perfect precision. However, it is largely unknown how much underlying microscopic variability is compatible with normal development. Here, we quantify embryo-to-embryo variability in vertebrate development by studying cell number variation in the zebrafish endoderm.
View Article and Find Full Text PDFThe Zmiz2 (Zimp7) protein and its homolog Zmiz1 (Zimp10) were initially identified in humans as androgen receptor co-activators. Sequence analysis revealed the presence of an SP-RING/Miz domain, which is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. Zimp7 has been shown to interact with components of the Wnt/β-Catenin signaling pathway and with Brg1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes.
View Article and Find Full Text PDF