Understanding how the environment regulates seed-bank dormancy changes is essential for forecasting seedling emergence in actual and future climatic scenarios, and to interpret studies of dormancy mechanisms at physiological and molecular levels. Here, we used a population threshold modelling approach to analyse dormancy changes through variations in the thermal range permissive for germination in buried seeds of Arabidopsis thaliana Cvi, a winter annual ecotype. Results showed that changes in dormancy level were mainly associated with variations in the higher limit of the thermal range permissive for germination.
View Article and Find Full Text PDFThe timing of emergence of weed species has critical ecological and agronomical implications. In several species, emergence patterns largely depend on the level of dormancy of the seedbank, which is modulated by specific environmental factors. In addition, environmental conditions during seed maturation on the mother plant can have marked effects on the dormancy level at the time of seed dispersal.
View Article and Find Full Text PDFPolygonum aviculare seeds show high levels of primary dormancy (PD). Low winter temperatures alleviate dormancy and high spring temperatures induce seeds into secondary dormancy (SD), naturally establishing stable seedbanks cycling through years. The objective of this work was to elucidate the mechanism(s) involved in PD expression and release, and in SD induction in these seeds, and the extent to which abscisic acid (ABA) and gibberellins (GAs) are part of these mechanisms.
View Article and Find Full Text PDFThe precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS).
View Article and Find Full Text PDFPlant Cell Physiol
January 2012
Grain sorghum [Sorghum bicolor (L) moench] exhibits intraspecific variability for the rate of dormancy release and pre-harvest sprouting behavior. Two inbred lines with contrasting sprouting response were compared: IS9530 (resistant) and RedlandB2 (susceptible). Precocious dormancy release in RedlandB2 is related to an early loss of embryo sensitivity to ABA and higher levels of gibberellins in imbibed grains as compared with IS9530.
View Article and Find Full Text PDFThe possibility of accurately predicting timing and extent of seedling emergence from natural seed soil banks has long been an objective of both ecologist and agriculturalist. However, as dormancy is a common attribute of many wild seed populations, we should first be able to predict dormancy changes if we intend to predict seedling emergence in the field. In this paper, we discuss the most relevant environmental factors affecting seed dormancy of natural seed soil banks, and present a conceptual framework as an attempt to understand how these factors affect seed-bank dormancy level.
View Article and Find Full Text PDFAnn Bot
October 2009
Background And Aims: Pre-harvest sprouting susceptibility in grain sorghum (Sorghum bicolor) is related to low seed dormancy and reduced embryo sensitivity to inhibition of germination by abscisic acid (ABA). Intra-specific variability for pre-harvest sprouting might involve differential regulation of ABA signalling genes.
Methods: Sorghum genes encoding homologues for ABA signalling components from other species (ABI5, ABI4, VP1, ABI1 and PKABA1) were studied at the transcriptional and protein level (ABI5) during grain imbibition for two sorghum lines with contrasting sprouting phenotypes and in response to hormones.
The effect of cold (stratification) temperature on changes in the sensitivity of Polygonum aviculare seeds to light was investigated. Seeds buried in pots were stored under stratification temperatures (1.6, 7 and 12 degrees C) for 137 d.
View Article and Find Full Text PDF