Publications by authors named "Roberto Lavarello"

Quantitative ultrasound is a non-invasive image modality that numerically characterizes tissues for medical diagnosis using acoustical parameters, such as the attenuation coefficient slope. A previous study introduced the total variation spectral log difference (TVSLD) method, which denoises spectral log ratios on a single-channel basis without inter-channel coupling. Therefore, this work proposes a multi-frequency joint framework by coupling information across frequency channels exploiting structural similarities among the spectral ratios to increase the quality of the attenuation images.

View Article and Find Full Text PDF

Prevalence of liver disease is continuously increasing and nonalcoholic fatty liver disease (NAFLD) is the most common etiology. We present an approach to detect the progression of liver steatosis based on quantitative ultrasound (QUS) imaging. This study was performed on a group of 55 rats that were subjected to a control or methionine and choline deficient (MCD) diet known to induce NAFLD.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is believed to affect one-third of American adults. Noninvasive methods that enable detection and monitoring of NAFLD have the potential for great public health benefits. Because of its low cost, portability, and noninvasiveness, US is an attractive alternative to both biopsy and MRI in the assessment of liver steatosis.

View Article and Find Full Text PDF

The backscatter coefficient (BSC) quantifies the frequency-dependent reflectivity of tissues. Accurate estimation of the BSC is only possible with the knowledge of the attenuation coefficient slope (ACS) of the tissues under examination. In this study, the use of attenuation maps constructed using full angular spatial compounding (FASC) is proposed for attenuation compensation when imaging integrated BSCs.

View Article and Find Full Text PDF

Pneumonia is one of the major causes of child mortality, yet with a timely diagnosis, it is usually curable with antibiotic therapy. In many developing regions, diagnosing pneumonia remains a challenge, due to shortages of medical resources. Lung ultrasound has proved to be a useful tool to detect lung consolidation as evidence of pneumonia.

View Article and Find Full Text PDF

Skin elastic properties change during a cutaneous disorder or in the aging process. Deep knowledge of skin layers helps monitoring and diagnosing structural changes. High frequency ultrasound (HF-US) has been recently introduced to diagnose and evaluate some dermatological disorders in the clinical practice.

View Article and Find Full Text PDF

Phase aberration is a phenomenon caused by heterogeneity of the speed of sound in tissue, in which the actual speed of sound of the tissue is different than the assumed speed of sound used for beamforming. It reduces the quality and resolution of ultrasonic images and impairs clinical diagnostic capabilities. Although phase aberration correction (PAC) methods can reduce these detrimental effects, most practical implementations of PAC methods are based on the near field phase screen model, which have limited ability to represent the true aberration induced by inhomogeneous tissue.

View Article and Find Full Text PDF

The axial resolution of an ultrasound imaging system is inversely proportional to the bandwidth of the emitted signal. When conventional pulsing (CP) is used, the impulse response of the transducer and the excitation signal determine together the shape of the emitted pulse and its bandwidth. A way to increase the ultrasound image resolution is to increase the transducer's limited passband.

View Article and Find Full Text PDF

The H-scan analysis of ultrasound images is a matched-filter approach derived from analysis of scattering from incident pulses in the form of Gaussian-weighted Hermite polynomial functions. This framework is applied in a preliminary study of thyroid lesions to examine the H-scan outputs for three categories: normal thyroid, benign lesions, and cancerous lesions within a total group size of 46 patients. In addition, phantoms comprised of spherical scatterers are analyzed to establish independent reference values for comparison.

View Article and Find Full Text PDF

Skin lesions change elastic properties near the surface. In the last decades, several non-invasive elastography techniques have been developed for detecting the mechanical properties of tissue. In particular, harmonic elastography is characterized for inducing shear wave propagation by an external vibrator in order to estimate shear modulus.

View Article and Find Full Text PDF

The minimum variance (MV) beamformer has the potential to enhance the resolution and contrast of ultrasound images but is sensitive to steering vector errors. Robust MV beamformers have been proposed but mainly evaluated in the presence of gross sound speed mismatches, and the impact of phase aberration correction (PAC) methods in mitigating the effects of phase aberration in MV beamformed images has not been explored. In this study, an analysis of the effects of aberration on conventional MV and eigenspace MV (ESMV) beamformers is carried out.

View Article and Find Full Text PDF

The attenuation coefficient slope (ACS) has the potential to be used for tissue characterization and as a diagnostic ultrasound tool, hence complementing B-mode images. The ACS can be valuable for the estimation of other ultrasound parameters such as the backscatter coefficient. There is a well-known tradeoff between the precision of the estimated ACS values and the data block size used in the spectral-based techniques such as the spectral-log difference (SLD).

View Article and Find Full Text PDF

Pneumonia is a disease which causes high mortality in children under five years old, particularly in developing countries. This paper proposes a novel application of ultrasound video analysis for the detection of pneumonia. This application is based on the processing of small video chunks, in which an image processing algorithm analyzes each frame to get some overall video statistics.

View Article and Find Full Text PDF

The minimum variance (MV) beamformer is a method that has the potential to enhance the resolution and contrast of ultrasound images. However, it suffers from sensitivity to speed of sound errors and aberration. Although there have been several studies on the application of phase aberration correction (PAC) methods to conventional delay-and-sum (DAS) beamforming, the benefits of PAC methods in mitigating the effects of phase aberration in MV beamformed images are not well understood.

View Article and Find Full Text PDF

Tissue characterization using quantitative ultrasound (QUS) parameters has received significant attention in recent years due to its potential to improve the detection and diagnosis of diseased states. However, the vast majority of studies in QUS tissue typing have used parameters derived from either longitudinal or shear waves in isolation, thereby discarding potentially useful complementary information these parameters may carry. In this study, the simultaneous estimation of backscatter coefficients (derived from longitudinal waves) and shear modulus (derived from shear waves) was implemented on data from a clinical scanner.

View Article and Find Full Text PDF

Sonoelastography is an ultrasonic technique that uses Kasai's autocorrelation algorithms to generate qualitative images of tissue elasticity using external mechanical vibrations. In the absence of synchronization between the mechanical vibration device and the ultrasound system, the random initial phase and finite ensemble length of the data packets result in temporal artifacts in the sonoelastography frames and, consequently, in degraded image quality. In this work, the analytic derivation of an optimal selection of acquisition parameters (i.

View Article and Find Full Text PDF

Elastography provides tissue stiffness information that attempts to characterize the elastic properties of tissue. However, there is still limited literature comparing elastographic modalities for tissue characterization. This study focuses on two quantitative techniques using different vibration sources that have not been compared to date: crawling wave sonoelastography (CWS) and single tracking location shear wave elasticity imaging (STL-SWEI).

View Article and Find Full Text PDF

Fine-needle aspiration (FNA) remains the gold standard for the diagnosis of thyroid cancer. However, currently, a large number of FNA biopsies result in negative or undetermined diagnosis, which suggests that better noninvasive tools are needed for the clinical management of thyroid cancer. Spectral-based quantitative ultrasound (QUS) characterizations may offer a better diagnostic management as previously demonstrated in mouse cancer models ex vivo.

View Article and Find Full Text PDF

Sonoelastography is an ultrasonic technique that provides qualitative and quantitative images of tissue elasticity. Even though the Kasai variance estimator is a key part of the sonoelastographic image formation, there are no studies that demonstrate that its performance using discrete time signals and finite sized ensemble lengths is optimal. In this work, the influence of the selection of acquisition parameters (pulse repetition frequency or PRF, vibration frequency, and ensemble length) on the quality of the elastograms is studied.

View Article and Find Full Text PDF

Ultrasound attenuation is typically compensated for in clinical scanners by using time gain compensation (TGC). However, TGC operates in a frequency-independent fashion and therefore the spatial resolution of the echographic images degrades as the examination depth increases. In the current study, the capability of a multi-band attenuation compensation (MBAC) TGC technique to recover both magnitude and spatial resolution in lossy media was evaluated.

View Article and Find Full Text PDF

Quantitative ultrasound (QUS) based on backscatter coefficient (BSC) estimation has shown potential for tissue characterization. Beamforming using plane wave compounding has advantages for echographic, Doppler, and elastographic imaging; however, to date, plane wave compounding has not been experimentally evaluated for the purpose of BSC estimation. In this study, two BSC-derived parameters (i.

View Article and Find Full Text PDF

Purpose: Previous studies have provided the observation that the ultrasonic backscattered energy from a tissue region will change due to a change of temperature. The mechanism responsible for the changes in backscattered energy (CBE) with temperature has been hypothesized to be from the changes in scattering properties of local aqueous and lipid scatterers. An alternative mechanism is hypothesized here to be capable of producing similar CBE curves, i.

View Article and Find Full Text PDF

Currently, the evaluation of thyroid cancer relies on the use of fine-needle aspiration biopsy, as non-invasive imaging methods do not provide sufficient levels of accuracy for the diagnosis of this disease. In this study, the potential of quantitative ultrasound methods for characterization of thyroid tissues was studied using a rodent model ex vivo. A high-frequency ultrasonic scanning system (40 MHz) was used to scan thyroids extracted from mice that had spontaneously developed thyroid lesions (cancerous or benign).

View Article and Find Full Text PDF

Backscatter and attenuation coefficient estimates are needed in many quantitative ultrasound strategies. In clinical applications, these parameters may not be easily obtained because of variations in scattering by tissues overlying a region of interest (ROI). The goal of this study is to assess the accuracy of backscatter and attenuation estimates for regions distal to nonuniform layers of tissue-mimicking materials.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) affects more than 30% of Americans, and with increasing problems of obesity in the United States, NAFLD is poised to become an even more serious medical concern. At present, accurate classification of steatosis (fatty liver) represents a significant challenge. In this study, the use of high-frequency (8 to 25 MHz) quantitative ultrasound (QUS) imaging to quantify fatty liver was explored.

View Article and Find Full Text PDF