The factors that govern assembly of the gut microbiota are insufficiently understood. Here, we test the hypothesis that inter-individual microbiota variation can arise solely from differences in the order and timing by which the gut is colonized early in life. Experiments in which mice were inoculated in sequence either with two complex seed communities or a cocktail of four bacterial strains and a seed community revealed that colonization order influenced both the outcome of community assembly and the ecological success of individual colonizers.
View Article and Find Full Text PDFUnder conventional conditions, mice deficient in core 1-derived O-glycans (TM-IEC C1galt1(-/-)), which have a defective mucus layer, experienced spontaneous inflammation of the colon. Analysis of fecal bacterial populations by pyrosequencing of 16S rRNA gene showed that disease in conventional TM-IEC C1galt1(-/-) was associated with shifts in the microbiota manifested by increases in Lactobacillus and Clostridium species, and decreases in unclassified Ruminococcaceae and Lachnospiraceae. Under germ-free (GF) conditions, TM-IEC C1galt1(-/-) presented decreased goblet cells, but did not develop inflammation.
View Article and Find Full Text PDF